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Foreword

The 8th Privacy Enhancing Technologies Symposium was held at the Katholieke
Universiteit Leuven during July 23–25, 2008. This year completed the transition
from workshop to symposium, with a printed proceedings published before the
symposium. PETS remains a premier venue for publishing original research on
privacy-enhancing technologies. PETS received 48 submissions, each of which
was reviewed by at least four members of the Program Committee. Thirteen were
accepted into the program, maintaining the selective and competitive nature of
the event. The program also included a keynote address by Stuart Shapiro.

A new feature this year was the HotPETs session, designed to balance the
desire for rigorous scientific quality of the PETS program and the need for a
venue to present work that is not yet fully developed. HotPETs accepted sub-
missions on the hottest, most exciting new ideas and put together an excellent
program of presentations.

PETS was once again collocated with the IAVoSS Workshop on Trustworthy
Elections (WOTE 2008), with a full day of plenary sessions. In addition, three
other privacy-related events were held at K.U. Leuven during the same week, en-
abling greater exchange of ideas among the respective communities: the closing
event of the Privacy and Identity Management for Europe (PRIME) project, a
workshop presenting the results from the Advanced Applications for Electronic
Identity Cards (ADAPID) project, and a working session of the Future of Iden-
tity in the Information Society (FIDIS) Workpackage 13.

The Program Chairs would like to thank, first of all, the authors and speakers
for their contribution to the content of the symposium. We would also like to
thank the Program Committee for their hard work of a month of reviews and two
more weeks of intense discussions, helping to ensure a program of high scientific
quality. Moreover, we want to acknowledge the contribution of external reviewers
who assisted the Program Committee with the reviews. We want to express a
special thanks to the “shepherds,” who continued their work after the main
review period, working with authors to improve the quality of the final paper
versions that appear in the proceedings: Claudia Diaz, Apu Kapadia, Steven J.
Murdoch, Carmela Troncoso, Patrick Tsang, and Matthew Wright.

Our General Chair, Claudia Diaz, did an outstanding job taking care of the
local arrangements, working with the organizers of the four collocated events,
and making sure the symposium ran smoothly. We are also grateful to the Com-
puter Security and Industrial Cryptography (COSIC) group at K.U. Leuven for
helping host the symposium. We would also like to thank Jeremy Clark for de-
signing and maintaining the PETS 2008 website. We thank the HotPETS Chairs,
Roger Dingledine, Thomas Heydt-Benjamin and Len Sassaman, for organizing
that part of the symposium. We are very grateful to the organizers of our col-
located events for their parts in coordinating with PETS: Olivier Pereira, Karel
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Wouters, Carmela Troncoso, and Vashek Matyas. Finally, we are very grateful
for the generous support of Microsoft, who provided student stipends and the
cash award for the PET Prize, EU FIDIS Network of Excellence who provided
stipends to FIDIS students, and the Office of the Information and Privacy Com-
missioner of Ontario, who provided the PET Prize statue.

May 2008 Nikita Borisov
Ian Goldberg
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Analyzing PETs for Enterprise Operations

Stuart Shapiro1 and Aaron Powell2

1 Principal Information Privacy and Security Engineer
2 Information Security Engineer

The MITRE Corporation
POC: Stuart Shapiro

+1-781-271-4676
sshapiro@mitre.org

Enterprises (large, often highly distributed organizations) in both the private and
public sectors are increasingly recognizing the need to comprehensively address
privacy risk. This entails, as it does for information security, a systematic com-
bination of people, processes, and technology. However, while establishing roles
and processes governing the management of personally identifiable information
(PII) can be done fairly readily (assuming availability of the necessary exper-
tise and experience), finding and deploying appropriate enterprise technology—
commercial or open source—is proving more problematic. A technological model
targeted at enterprises (i.e., data stewards) differs from one targeted at individ-
uals (i.e., data subjects). However, the privacy-enhancing technology research
community has tended to focus more on the latter than on the former. Further-
more, various enterprise technologies exist with capabilities that can support
privacy, even if not specifically intended to do so. We have adopted the term
privacy-enabling technologies (PETs) to denote the expansiveness of this field.

This presentation will begin with a discussion of some of the drivers behind
enterprise approaches to privacy risk management, with emphasis on develop-
ments within the U.S. federal government (MITRE’s Privacy Practice supports
a variety of government sponsors) and, in particular, within the U.S. Intelligence
Community (IC). In addition to the difficulties of implementing in a modern tech-
nological environment the privacy protections mandated by the so-called “U.S.
Persons Rules,” the development of the IC’s Information Sharing Environment
(ISE) has prompted greater attention to the need for enterprise technologies to
address privacy risk. (In the Fall of 2006, the IC held a series of workshops on
privacy protection technologies, a report on which has recently been released.)
Following discussion of these drivers, we will consider a categorization scheme
for commercially-available enterprise PETs, map those categories to generic PII
governance processes they can support, and draw out the implications of po-
tential gaps. The presentation will conclude by briefly exploring the notion of
a privacy-enabled architecture as an organizing concept for PETs within an
enterprise.

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, p. 1, 2008.



Perfect Matching Disclosure Attacks

Carmela Troncoso, Benedikt Gierlichs, Bart Preneel, and Ingrid Verbauwhede

K.U. Leuven, ESAT/SCD-COSIC, IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. Traffic analysis is the best known approach to uncover rela-
tionships amongst users of anonymous communication systems, such as
mix networks. Surprisingly, all previously published techniques require
very specific user behavior to break the anonymity provided by mixes.
At the same time, it is also well known that none of the considered user
models reflects realistic behavior which casts some doubt on previous
work with respect to real-life scenarios. We first present a user behavior
model that, to the best of our knowledge, is the least restrictive scheme
considered so far. Second, we develop the Perfect Matching Disclosure
Attack, an efficient attack based on graph theory that operates without
any assumption on user behavior. The attack is highly effective when
de-anonymizing mixing rounds because it considers all users in a round
at once, rather than single users iteratively. Furthermore, the extracted
sender-receiver relationships can be used to enhance user profile estima-
tions. We extensively study the effectiveness and efficiency of our attack
and previous work when de-anonymizing users communicating through
a threshold mix. Empirical results show the advantage of our proposal.
We also show how the attack can be refined and adapted to different
scenarios including pool mixes, and how precision can be traded in for
speed, which might be desirable in certain cases.

1 Introduction

Traffic analysis exploits traffic data to infer information about observed commu-
nications. It is the most powerful known attack against anonymous networks.
More precisely, Disclosure (or Intersection) attacks use the fact that users’ com-
munication patterns are repetitive to uncover communication relationships be-
tween them [1,4].

Previous work on Disclosure Attacks [1,4,5] considers a very simplistic model,
where users send messages to a fixed set of contacts through a threshold mix.
Users choose amongst their communication partners with uniform probability
and the effectiveness of these attacks strongly relies on this model. In this paper
we present a new attack, the Perfect Matching Disclosure Attack, that requires
no assumption on the users’ behavior in order to reveal their relationships. Be-
sides its capability to uncover relations amongst users, i.e. their sending pro-
files, in an arbitrary scenario, we demonstrate the strength of our attack in

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 2–23, 2008.
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de-anonymizing individual messages, i.e. finding the links between messages ar-
riving to the network and messages leaving it. Our method’s advantage stems
from the fact that it considers all users in a round at once, rather than single
users iteratively. This approach is likely to de-anonymize a large fraction of the
set correctly in scenarios where a per user approach fails with high probability.

We analyze and compare the Statistical Disclosure Attack (SDA) and the
Perfect Matching Disclosure Attack (PMDA) empirically in two scenarios. In
both scenarios, we chose a simple threshold mix as communication channel such
that we can focus on presenting our techniques. With respect to a simple user
behavior model we observe that the SDA and the PMDA perform very similar.
In a generic user model the PMDA outperforms the SDA for a limited increase
of computational cost. Simulation results show that our method is more accurate
when linking senders and receivers of de-anonymized messages and that it allows
to derive better estimations of users’ profiles. We also propose the Normalized
SDA, a trade-off between precision and speed, which yields results nearly as good
as the PMDA with a running time slightly higher than the one of the original
SDA.

This paper is organized as follows. Section 2 provides an overview of the
state-of-the-art of attacks on mix networks. We explain the system model and
our models for user behavior in Sect. 3. Section 4 describes the mathematical
background for our attack and its application to a threshold mix. In Sect. 5 we
show how our attack and the SDA can be applied in practice. An evaluation
of both methods is presented in Sect. 6. We explain in Sec. 7 how to construct
enhanced user profiles while Sect. 8 deals with further improvements and variants
of the PMDA. Finally, we pose some open questions and conclude in Sect. 9.

2 Related Work

Mixes were proposed by David Chaum [3]. Chaum’s proposal consists of a router
that receives a number of messages of fixed length, performs some cryptographic
operations on them changing their appearance and outputs the result in a ran-
dom order. This ensures that linking inputs and outputs based on timing infor-
mation is impossible. Mixes can be combined in networks, such that even if a mix
is compromised, the user’s anonymity is guaranteed. They are widely used in the
literature to implement anonymous email [6,17] or e-voting protocols [11,14].

Although mix networks provide good anonymity, they are vulnerable to long-
term traffic analysis attacks. An attacker who observes a mix network can collect
what is called traffic data: the identities of the messages’ senders and receivers,
together with the timing of these events. The family of Disclosure Attacks [1,12]
aims at identifying users’ communication patterns. It is assumed that the partic-
ipants communicate through a threshold mix. This mix collects a certain number
of messages per round, and outputs them in a random order. Applying the Dis-
closure Attack, an adversary observing the mix, i.e. senders and receivers per
round, over enough time can uncover the set of Alice’s friends. Nevertheless, the
Disclosure Attack is very expensive, as it relies on solving an NP-problem and
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is only feasible for very small systems. A more efficient approach to obtain the
exact solution, the Hitting Set Attack was proposed in [13].

Danezis presents a different efficient approach, the Statistical Disclosure At-
tack [4], which reveals the most likely set of Alice’s friends using statistical
methods and approximations assuming the same model as in [1]. The attack
model was extended to include anonymous replies in [5] and to consider a pool
mix instead of a threshold mix in [7]. More complex models are analyzed and
tested by simulation in [16]. Besides discovering a user’s set of friends, Danezis
proposes in [4] to use Alice’s sending profile derived in the attack to individually
trace each of the messages she sends to the network.

An approach to measure anonymity has been developed independently by
Edman et al. and was recently published in [9]. It is to some extent related
to our work as it applies the same fundamental notions of graph theory and
optimization problems. However, the goals of their and our work are different.
Edman et al. argue that anonymity metrics reflecting the perspective of a single
user have certain defects and define a metric that, as they claim, benchmarks
the system as a whole. However, they also make clear that their metric is only
supposed to complement entropy based metrics and that it can not express the
degree of anonymity provided to a single user.

By contrast, we look at mix networks and the anonymity they provide from
an adversarial point of view. We derive a robust attack that does not rely on
an assumption about the user behavior and focus on pinpointing the success
probability of an adversary.

Although the work of Edman et al. is supposed to support system designers
while our approach clearly reflects the adversarial side, both works have, to some
extent, a common conclusion: whether it is to measure anonymity or to derive
strong attack methodologies — considering the perspective of a single user is not
good enough. At the same time the works are separate. Their metric is not self-
contained and cannot express some necessary aspects of anonymity. Therefore, it
can only complement previously derived information-theoretic metrics. We seek
to put our proposal into context, empirically rate it against previous work, and
show that it is superior in relevant and generic scenarios.

3 System and User Models

In this section we introduce our notation to describe anonymous channels and
propose a new generic user model.

Consider a set of users U of cardinality u. We define the sending profile of a
user x ∈ U , say x is Alice, as the probability distribution PAlice of the same size.
A given element of the distribution expresses the probability that Alice sends
a message to a given user y ∈ U , say y is Bob. So for example, PAlice(Bob)
is the probability that Alice sends a message with Bob. The distribution as a
whole describes Alice’s sending behavior with respect to the entire population
(including herself). For completeness, we note that

∑
y Px(y) = 1 for all x.

As done in previous work [5], we model the sending rate of each individual user
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x ∈ U as a Poisson distribution with parameter λx. Further, we use the following
notion of friendship: we say y is a friend of x, if x sends a message to y with
non-zero probability. That is, if Px(y) > 0.

We consider two types of populations. The first one, U0, is a simple and
very restrictive user behavior model. Gradually relaxing assumptions on the
number of users’ friends and the user sending behavior, we construct a series of
populations U1 to U5. The latter is the most generic model considered in the
literature so far to the best of our knowledge and the second population we deal
with in this work. We define the models as follows:

U0: a single user, Alice, has k randomly selected friends; her sending behavior
toward her friends is uniform; PAlice contains k times the value 1

k and u − k
times the value zero; all other user profiles contain u times 1

u ;
U5: every user x has an individual number kx of friends that is chosen at random;

the sending probabilities toward the friends are randomly chosen from a
uniform distribution and normalized such that

∑
y Px(y) = 1 for all x;

The anonymous channel, used by both populations, is modeled as a threshold
mix. The mix’s sole parameter is the threshold t which defines the number of
messages in a round.

3.1 Comparison with Previous Models

The original Disclosure Attack and its first sequels [1,4,13] use a model that
is almost equivalent to our model with population U0. The sole difference is
that, in their model, Alice sends exactly one message per round in which she
participates, contrary to our model where this limitation does not exist.

Mathewson and Dingledine introduce in [16] a more complex model. First,
Alice is allowed to send more than one message per round in which she partic-
ipates and second, all the participants have a set of friends. Nevertheless, their
behavior toward them is still uniform. In some of their experiments they go a
step further and let Alice, but not the rest of the users, choose with non-uniform
probability amongst her friends, thus obtaining a model a bit closer to our U5.
A recently published attack, the Two-Sided Statistical Disclosure Attack [5], is
tested under U0 traffic and in a variant where all users have the same number of
friends to which they send with uniform probability. Both models permit several
messages of Alice per round in which she participates. The main drawback of
the aforementioned models is their narrowness. With the proposed model U5 we
aim at covering a wider range of scenarios, including previous work.

In particular, U5 requires no assumption about the number of users that have
friends, the number of friends they have, and the sending behavior toward their
friends.

4 Mathematical Background

In this section we recapitulate the required basic notions of graph theory and
introduce our optimization problem. Then we show how we model a threshold
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mix using these notions and in particular bipartite graphs. Next, we explain how
maximum weighted bipartite matchings can be used to efficiently de-anonymize
users communicating through a threshold mix. For further reading about graph
theory in an anonymity context we refer the interested reader to [10].

A graph G = (N, E) consists of a set of nodes N and a set of edges E. Without
loss of generality we assume N �= ∅. A bipartite graph G = (S ∪R, E) is a graph
whose nodes can be divided into two distinct sets S and R such that every edge
in E connects one node in S and one node in R. In other words, there exists no
edge between nodes from the same set. In this paper we focus on sets S and R
of equal and finite cardinality t > 1. A set of edges M ⊆ E is called a matching
in the bipartite graph G if no node in G is incident to more than one edge. A
perfect matching additionally requires that every node is incident to exactly one
edge. In a weighted bipartite graph G each edge ei ∈ E is associated with a
weight wi. Figure 1 illustrates the definitions.

Fig. 1. Bipartite graphs: matching, perfect matching, and perfect matching with
weights

A maximum weighted bipartite matching is defined as a perfect matching for
which the sum of the weights wi associated with the edges in the matching has
a maximal value, i.e. the perfect matching M maximizes

∑
i wi|ei ∈ M . If the

graph is not complete bipartite, i.e. edges which would not violate the require-
ments of a bipartite graph are missing due to other restrictions, one usually
inserts the missing edges with an associated weight of zero. In the rest of this
work we focus on maximum weighted bipartite matchings and assume complete-
ness of the graph.

In the literature, finding such matchings is often called the assignment prob-
lem. Usually it is assumed that i) the distinct sets of nodes are of equal and
finite size and ii) the total weight of the assignment (or matching) is equal to
the sum of the weights associated to the edges in the assignment. In this case
one deals with a linear assignment problem. Algorithms to solve linear assign-
ment problems include the Hungarian algorithm [15] with complexity O(N2E)
which can be optimized to O(N2 log(N)+NE), the Bellman-Ford algorithm [2]
O(N2E) and the Dijkstra algorithm [8] O(N2 log(N) + NE).

4.1 The Optimization Problem

Let S and R be sets of nodes of cardinality t in a complete bipartite graph
G = (S ∪ R, E). We define an assignment M as a perfect matching on G. Let
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P ′ be a t × t matrix containing weights ws,r, representing probabilities, for all
possible edges es,r in G. Applying Bayes theorem, the conditional a posteriori
probability p(M |S, R) can be computed as

p(M |S, R) =
p(S, R|M) · p(M)

p(S, R)
.

Given an assignment M , the sets of nodes S and R are implicitly fixed and thus
p(S, R|M) = 1. It follows that p(M |S, R) = p(M)/p(S, R). Since the sets S and
R are given in the condition, p(S, R) is a constant term and independent of a
considered assignment M . Therefore, the assignment M maximizing p(M) also
maximizes p(M |S, R).

An assignment M is a perfect matching on G, thus p(M) is the joint proba-
bility of the individual edges es,r ∈ M . Assuming that the edges es,r ∈ M are
independent, the joint probability p(M) is the product of the individual edge
probabilities

p(M) =
∏

es,r∈M

ws,r .

4.2 Mapping to a Threshold Mix

The t messages sent during one round of the mix form the set S. Each node
s ∈ S is labeled with the sender’s identity sen(s). That is, two messages from
one sender are represented by two different nodes with the same label (note that
a node does not represent a specific user, but a message sent by a specific user).
Equivalently, the t messages received during one round form the set R where
each node r is labeled with the receiver’s identity rec(r). An edge es,r in this
graph always connects a sent message s with a received message r, implying
that these two messages are the same (s = r) and therefore exhibiting the link
between sender and receiver. The nodes S∪R and the edges E form the complete
bipartite graph G = (S ∪ R, E). A perfect matching M on G links all t sent and
received messages.

The weights ws,r associated with the edges es,r ∈ E are derived from user
profiles Px. We discuss how to estimate these user profiles and practical issues in
a separate section. Recall that for each user x, Px describes the sending behavior
toward the entire population but, for a given round, only those x and elements of
Px associated with senders and receivers in the round are of interest. Therefore
we derive the t × t matrix P ′(s, r) := Psen(s)(rec(r)) , s ∈ S, r ∈ R.

In the bipartite graph G = (S ∪ R, E), an edge es,r between a message s ∈ S
sent by user sen(s) and a message r ∈ R received by user rec(r) is associated
with ws,r = P ′(s, r). Note that a priori the graph is complete bipartite as
every sent message can be linked to every received message. If the user profiles
exclude certain individuals from the list of possible communication partners due
to Psen(s)(rec(r)) = 0, the relation is represented by an edge of weight zero.

In our model, all senders send with the same sending rate such that all combi-
nations of senders sen(S) are equally likely to be observed. Each sender chooses
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the recipient(s) of her message(s) independently of the choice(s) of all other
senders. Further, if a user sends multiple messages, the receivers of these mes-
sages are also chosen independently. Therefore, we can model the case that a
user sends two (or more) messages by considering her two (or more) distinct
senders with identical profiles that each send one message to independently cho-
sen receivers.

Given a round observation, which consists of multisets of senders sen(S) and
receivers rec(R), the probability of each assignment M is

∏
es,r∈M ws,r. The

assignment M maximizing p(M) also maximizes p(M |S, R).

5 Attack Description

In this section we describe the profiling step and the de-anonymization step of
the Statistical Disclosure Attack and the improved de-anonymization step of the
Perfect Matching Disclosure Attack.

An attacker deploying a Disclosure Attack observes the system during ρ
rounds, collecting the identity of the senders and receivers in each of them.
We denote sen(Si) the set of the senders of the t messages arriving to the mix
in round i and rec(Ri) the set of the corresponding receivers. We denote the
whole set of ρ round observations as the trace T = (Si, Ri), 1 ≤ i ≤ ρ. We note
that both sen(Si) and rec(Ri) are multisets and may contain repeated elements,
meaning that users can send (or receive) more than one message in each round.

5.1 Profiling with the Statistical Disclosure Attack

The SDA, as presented by Danezis in [4], focuses on revealing the likely set of
friends of a target user, Alice. It was proposed for a scenario very close to our
U0 scenario, where Alice is the only user in the system that has a set of friends
(PAlice contains k positions with value 1/k corresponding to her k friends), and
the rest of the population choose their recipients uniformly amongst all the users
(Psen(s)(rec(r)) = 1

u for all s ∈ S, r ∈ R, sen(s) �= Alice). The sole difference of
Danezis’ model with respect to our definition of U0 is that in his model Alice
sends exactly one message per round in which she participates.

In each round where Alice is sending a message, an attacker deploying the
SDA considers the probability distribution O of the potential recipients of this
message as a combination of the profiles of all the participating senders

O =
1
t
PAlice +

t − 1
t

Px, x ∈ sen(Si) \ {Alice} . (1)

For a sufficient number i of observed rounds, the law of large numbers allows to
estimate Alice’s profile from the empirical mean over the observed rounds:

Ō =
1
t

∑

i

Oi ≈ PAlice + (t − 1)Px

t
⇒ P̃Alice ≈ t

∑
i Oi

t
− (t − 1)Px . (2)
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Using the round observations contained in T as input to this method, the
attacker estimates the profiles of all the users in the system. We denote the
estimated profile of user x obtained in this phase P̃x,SDA, for each user x in the
population, and we denote the whole set of these profiles as P̃SDA.

5.2 De-anonymization with the Statistical Disclosure Attack

As suggested in [4,5], the estimated profile can be used to rank the potential
receivers of a message from Alice according to the likelihood that Alice would
send to them. The most likely receiver rec(r) of her message in a round i can
thus be easily identified as

rec(r) = argmaxrec(r) P̃Alice,SDA(rec(r)), r ∈ Ri . (3)

When de-anonymizing the receivers of several messages in one round, the most
obvious, though näıve approach is to repeat this procedure for each individ-
ual sent message. Figure 2 depicts the entire de-anonymization process, where
the box marked as SDA profiling represents the profiling step described in the
previous section, and the output DSDA is the de-anonymization result of the
attack.

Fig. 2. De-anonymization with the Statistical Disclosure Attack

5.3 De-anonymization with the Perfect Matching Disclosure Attack

In a nutshell, our idea is to link all messages sent and received during one
round such that each message is linked and the joint probability of all links
is maximized. Thus, we aim at finding a maximum weighted bipartite matching
on the underlying graph, which in terms of algorithmic computer science is an
assignment problem. We denote the space of all perfect matchings on the graph
G by M and require that an eligible set of edges belongs to this space, i.e. it
must be a perfect matching M ∈ M.

Given the trace T of round observations, the adversary first estimates sim-
ple user profiles P̃SDA as described in 5.1. Then she uses these profiles to de-
anonymize mixing rounds, see Fig. 3. For a round i, she derives the t × t matrix
P ′(s, r) := P̃sen(s),SDA(rec(r)) , s ∈ Si, r ∈ Ri. The joint probability of all t links
in an assignment M is pjoint =

∏
es,r∈M P ′(s, r) .

As derived in Sect. 4.1, the assignment M that maximizes pjoint is the ad-
versary’s best guess. Note that maximizing pjoint does not fit the definition of
a linear assignment problem because a maximum weight bipartite matching is
achieved by maximizing the sum of edge weights in a perfect matching. In order
to model our problem as a linear assignment problem one more step has to be
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taken. To linearize the problem, we replace each element of the matrix P ′(s, r)
with its logarithmic value log10(P ′(s, r)) before associating it to the edge es,r

linking message s to message r.
It is well known that the logarithm is a monotonically ascending function, if

the basis is greater than or equal to one. Thus maximizing log10(pjoint) is equiv-
alent to maximizing pjoint. The advantage is that log10(pjoint) can be calculated
as a sum

log10(pjoint) = log10(
∏

es,r∈M

P ′(s, r)) =
∑

es,r∈M

log10(P
′(s, r)) . (4)

Having each edge associated with a log-probability, the assignment problem is
linearized and can be solved efficiently. Using as input the matrix P ′, a suitable
algorithm to solve linear assignment problems outputs the most likely sender-
receiver combination for all t messages in the round as the perfect matching M ∈
M. It is a maximum weighted bipartite matching on the graph G = (S ∪ R, E)
and maximizes pjoint for this round. We summarize the approach for one round:

1. sent messages are nodes in Si and marked with their senders’ identities
2. received messages are nodes in Ri and marked with their receivers’ identities
3. derive the t × t matrix: P ′(s, r) := P̃sen(s),SDA(rec(r)) , s ∈ Si, r ∈ Ri

4. replace P ′(·, ·) with log10(P
′(·, ·))

5. solving the linear assignment problem yields the maximum weight bipartite
matching M .

Fig. 3. De-anonymization with the Perfect Matching Disclosure Attack

In order to implement the attack, a subtle detail needs to be considered.
Taking into account that, before applying the logarithm, 0 ≤ P ′(·, ·) ≤ 1 and
that log(0) is not defined, we need to define log(0) = −∞ in order for the
algorithm to maximize the joint probability. Note however, that i) this case is
rarely encountered in practical scenarios unless one has access to very precise
user profiles and that ii) replacing 0 with −∞ solely prevents numerical errors
and has no influence on the output M of the matching algorithm. Further, some
implementations of algorithms for linear assignment problems aim at minimizing
the sum of the edge weights (e.g. costs) in a perfect matching. However, a linear
maximization problem can be turned into a linear minimization problem by
substituting P ′(·, ·) = −P ′(·, ·).

6 Empirical Evaluation of De-anonymization Techniques

In order to evaluate the performance of the Perfect Matching Disclosure Attack,
we deploy it in different scenarios and compare it to the original Statistical
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Disclosure Attack. Our goal is to study the impact of system parameters on the
effectiveness and viability of both attacks.

6.1 Experimental Settings

Our experiments are carried out on populations U of size u = 1000 users that
send messages through a threshold mix with threshold t = 100, ensuring that a
considerable fraction of the users participate in each mixing round. Every user
x ∈ U chooses her recipients according to her profile Px, which depends on the
considered user behavior model (see Sect. 3), and initiates communications with
the same frequency λ. We note that, given that the attacks need full rounds
of mixing, the choice of this parameter’s value is arbitrary. As long as all users
send messages to the network with equal rate, their frequency of appearance
as senders does not depend on the precise sending rate. Although real users
are expected to send messages with different frequencies, we chose to fix this
parameter in order to create a scenario that allows us to clearly illustrate our
techniques.

We study how the number of rounds observed by the attacker affects the
performance of the PMDA and the SDA. Both from the adversarial and the
designer’s points of view, this consists of exploring the effectiveness, efficiency,
and scalability of the attacks. For the purpose of our studies we have generated
100 000 mixing rounds. An experiment consists of 1) estimating all user profiles
P̃SDA from ρ round observations, 2) de-anonymizing 5000 rounds with the SDA,
and 3) de-anonymizing the same 5000 rounds with the PMDA (except when
ρ = 1000, when we only de-anonymized 1000 rounds). Table 1 summarizes the
parameters and their values in the experiments.

Table 1. Parameters of the experiments (N=1000, t=100), μ is average number of
messages used to profile one user, γ is average number of de-anonymization trials per
user

�����Param
ρ

1k 5k 10k 25k 50k 100k

μ 100 500 1000 2500 5000 10000
γ 100 500 500 500 500 500

Population No of friends k Profile

U0 {5, 25, 50} Uniform
U5 random [5, 50] Non-uniform

6.2 Results

In this section we present the results of our experiments. To measure the effec-
tiveness of the attacks we define two metrics, the individual success rate and the
round success rate. The former expresses the accuracy of the attack when de-
anonymizing the receiver of a message from a particular sender, i.e. successfully
linking a specific sender to a receiver. It is computed by counting how many
messages sent by each user in the population have been correctly de-anonymized
during the attack, then deriving the success rate per sender by dividing by the
number of messages sent by this user. The latter shows the percentage of links
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correctly de-anonymized per round. We calculate it as the average number of
relations successfully identified per round. Both metrics are computed over all
5000 (1000) rounds.

It is important to note that we consider a message as de-anonymized correctly
if and only if the attack has identified the receiver of that message correctly. Note
that this does not necessarily require to match a sent message to the correct
received message. We apply a hard yes/no metric on whether the identity of
the matched recipient is correct. This is a more rigorous criterion than the one
used in [4,5] where the rank in the sorted probability distribution of potential
receivers is taken into account.

Population U0. We test both attacks in three U0 populations where Alice has
k friends. We look at the influence of the number ρ of rounds used in the profiling
step on the success rates of the attacks.

Figure 4 illustrates the individual success rates. As all users except for Alice
send uniformly to the entire population, no information can be inferred about
them. Therefore the results refer only to Alice’s messages and we only consider
her individual success rate. We see that the PMDA does not get any advantage
in these scenarios, and both attacks score similarly. On the one hand this is due
to the lack of information that the rest of senders in the round provide. Since
their profile is uniform, they give no hints about who Alice is not sending to.
On the other hand, Alice chooses uniformly amongst her friends. Therefore, if
two or more of her friends appear in the set rec(R), the best the algorithm can
do is choose randomly amongst them. This last problem also affects the SDA’s
effectiveness. One can observe in the graph that, the smaller the number of
friends (thus the smaller the probability that this difficulty appears) the higher
the success rate of both attacks. The graph shows that in some cases the PMDA
performs slightly worse/better than the SDA, but these small differences have
no statistical significance.

As expected, increasing the number ρ of rounds to profile users increases the
likelihood of successful attacks. It is remarkable, however, that this rate does

Fig. 4. Individual success rate in a U0

population
Fig. 5. Alice’s profile in a U5,1 and U5,2

scenario
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not increase constantly. When the number of Alice’s friends is small (k = 5),
not much improvement is achieved by increasing the number of profiling rounds
above 10 000. Nevertheless, having more rounds helps the attacker when the
number of friends increases, as more rounds, in which Alice participates, are
needed to observe her sending messages to all of her friends.

Population U5. For our second set of experiments, we prepared two bench
tests, U5,1 and U5,2, where users had a complex behavior corresponding to U5

populations. In both cases each user had a random number of friends chosen
uniformly from [5, 50]. However, the scenarios differ in the way the sending prob-
abilities are distributed amongst these friends. Users corresponding to the U5,1

example have a set of contacts where there are one or two very good friends
(which they choose as recipients in more than 60% of the cases) and the rest
have small probability of being chosen. The users forming the population for the
second test, U5,2, do not have strong preferences about their contacts, still, their
distribution is non-uniform. Figure 5 depicts Alice’s profile in the U5,1 and U5,2

scenarios.
Contrary to the U0 case, where the SDA and the PMDA performed similarly,

the PMDA achieves higher de-anonymization success rates when applied to a
U5 scenario. Figure 6 shows the percentage of users participating in the commu-
nication for which the attacks obtain a certain individual success rate in both
U5 scenarios. We represent different values for the number ρ of rounds used for
profiling with different line styles.

We see that the PMDA outperforms the SDA in both experiments, but there
is a significant difference between them. With respect to the U5,1 case (on the
left side of the figure) and ρ = 10 000 one can observe that the SDA achieves
an average individual success rate of 71.5% while the PMDA scores an average
individual success rate of 96.04% and de-anonymizes more than 90% of the
messages correctly for 99.6% of the users. With respect to the U5,2 case (right
side of the figure) and ρ = 10 000 the SDA achieves an average individual success
rate of 26% while the PMDA scores 55.35%.

Figure 7 presents the round success rates of the SDA and the PMDA. Like
in the individual success rate, our attack outperforms the SDA. In the U5,1 case
(left), the SDA has a high rate (71.5% in average) of round de-anonymization,
whichever is the number of rounds observed. However, the PMDA improves this
result de-anonymizing in average 96.05% of the messages in each round when
10 000 rounds have been used for profiling and correctly de-anonymizing the
full set of links in 17.22% of the cases. The success of both attacks diminishes
when the user’s sending patterns tend to be more uniform toward their friends
(case U5,2, right). For the same number of ρ = 10 000 observed rounds the SDA
achieves an average round success rate of 25.6% and the PMDA 55.3%.

It is important to note the influence of the number of rounds observed by the
attacker on the success rates of the attacks. Increasing the number of observa-
tions makes both attacks more accurate. However, there are notable differences
in the effect of this increase depending on the type of population attacked as
well as on the attack itself. Analyzing a higher number of rounds provides more
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Fig. 6. Individual success rate attacking U5 populations (U5,1 left, U5,2 right)
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Fig. 7. Round success rate attacking U5 populations (U5,1 left, U5,2 right)

information, a fact exploited by the PMDA. On the contrary, the SDA’s simple
decision algorithm takes little advantage of this extra information and we see
that almost no improvement is achieved by observing more than 5000 rounds.
Moreover, when the attacks are carried out in a U5,1 scenario, the users’ profiles
have a low entropy, thus the strong friends are early identified and no additional
information is extracted from new round observations.

6.3 Scalability of the Attacks

We evaluate the efficiency of both attacks in terms of time. We implemented
both attacks in the high-level interpreted language of a commercial numerical
computing environment without any optimizations. In our implementation of
the PMDA we use the Hungarian algorithm [15] to solve the linear assignment
problem of finding the most likely perfect matching between inputs and outputs
of the mix. We show in Table 2 the time it takes to carry out all the operations
depicted in Fig. 2 for the original SDA and in Fig. 3 for the PMDA in U5,2

scenarios with mix thresholds 100, 500 and 1000. In all cases the profiles P̃SDA
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have been derived from ρ = 50 000 rounds and have been used to de-anonymize
5000 rounds (i.e., find the recipients for all s in Si, 1 ≤ i ≤ 5000). The code
for scenarios with threshold 100 and 500 rounds was executed on a machine
with a processor running at 2.8 GHz and 512 KB cache and for the threshold
1000 scenario we used a machine with a processor running at 2.2 GHz and 1
MB cache. We include the success rates for t = 100 to illustrate the trade off
between accuracy and speed.

Table 2. Timings of the attacks: estimation of profiles from 50 000 rounds and de-
anonymization of 5000 rounds

Attack
t = 100 t = 500 t = 1000

Time Success rate, mean (min) Time Time

SDA profiling 3.08m - 38.33m 66.16m

SDA de-anon 10m 25.6% (0.00%) 3.48h 12.91h
PMDA de-anon 10.2m 62.9% (38.8%) 12.9h 4.69days
NSDA de-anon 13.33m 60.2% (33.5%) 4.28h 15.3h

The PMDA de-anonymization is slower than the SDA de-anonymization and
the difference grows as the size of the threshold and thus the underlying bi-
partite graph increases. Nevertheless, it yields higher success rates. In Sect. 8.2
we propose the Normalized Statistical Disclosure Attack (NSDA), that com-
bines accuracy and speed. Table 2 includes the success rate and timings for the
operations shown in Fig. 12 inside the dotted line. Note that all of the attacks’
efficiencies would substantially benefit from optimized implementations. Further,
the PMDA in particular is suited for parallelization.

7 Enhanced Profiling with the Perfect Matching
Disclosure Attack

So far we have focused on the PMDA’s de-anonymization capability. In this
section, we show how the derived maximum weighted bipartite matchings Mi

can be used to better estimate user profiles.
A better estimation of a profile, say PAlice, is built by, instead of considering all

possible receivers of her message(s) in a round i as equally likely, considering the
receiver(s) indicated by the matching Mi as the most likely. Instead of assigning a
probability of 1/t to each receiver in rec(Ri), the attacker assigns z to the receiver
assigned to Alice’s message(s) by Mi and (1−z)/(t−1) to the rest of the elements
in rec(Ri). This step is marked with “PMDA profiling” in Fig. 8. The choice of
the weight z is not that crucial. It expresses the confidence one has in the perfect
matchings Mi. We experimented with different values for this parameter but ob-
served that the effect on the profile estimation is minor. However, there is one
hard bound. Choosing the weight z such that z = (1−z)/(t−1) turns the second
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Fig. 8. Obtaining enhanced profiles with the Perfect Matching Disclosure Attack

profiling step useless as this setting reflects the original SDA, and choosing z <
(1−z)/(t−1) will effectively hide the actual users’ relationships. We chose z = 0.5
without a specific motivation. Note that the same ρ round observations used
to construct the simple profile P̃Alice,SDA are reused to estimate the enhanced
profile P̃Alice,PMDA.

The same procedure can be applied to the decision Di of the de-anonymization
phase of the SDA, yielding a more accurate profile than the one estimated by
the original SDA and denoted by P̃Alice,eSDA.

For a U0 scenario where Alice has five friends, Fig. 9 shows the profile PAlice

we initially generated for Alice, her profile after the PMDA’s profiling step, the
approximation of her profile derived with the enhanced SDA, and her profile
estimated using the original SDA. Figure 10 shows the corresponding set of
profiles for a U5,2 scenario. We observe in both cases that the profile estimation
P̃Alice,eSDA is more precise than P̃Alice,SDA but not as good as P̃Alice,PMDA.

Fig. 9. Alice’s profile and estimations (logscale) for U0, ρ = 100 000. From left to right:
PAlice, P̃Alice,PMDA, P̃Alice,eSDA, and P̃Alice,SDA.

In the U0 scenario, all three estimations allow the adversary to easily identify
the set of Alice’s friends, even if the exact number k of friends is unknown.
However, the enhanced methods increase the contrast between friends and non-
friends. In the U5,2 scenario, P̃Alice,SDA does not allow to identify friends, and
even worse, there exist non-friends of Alice that have higher probability than
some of her friends. P̃Alice,eSDA improves the estimation and allows to identify
Alice’s best friends (those with high probability in PAlice), but it fails to show
more unlikely receivers as for example user 19. In P̃Alice,PMDA the estimation
is further improved and all of her friends have higher probabilities than her
non-friends.
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Fig. 10. Alice’s profile and estimations (logscale) for U5,2, ρ = 100 000. From left to
right: PAlice, P̃Alice,PMDA, P̃Alice,eSDA, and P̃Alice,SDA.

8 Extending the Perfect Matching Disclosure Attack

In this section we present variants and extensions of the Perfect Matching Dis-
closure Attack. The iterated PMDA and the normalized SDA are alternatives
with different trade-offs between precision and computational load. We also out-
line how the PMDA, and any of its variants can be applied to the more realistic
scenario of a pool mix.

8.1 Iterated PMDA

The profiles P̃PMDA can be used as input to a subsequent PMDA de-anonym-
ization step, yielding the perfect matchings M∗

i as output, which uncover the
actual relations between senders and receivers for each round with an even higher
rate of success than the PMDA, particularly in U5 scenarios. Further, the M∗

i

can be used for a subsequent PMDA profiling step, yielding user profiles that
are slightly better than the P̃PMDA. Figure 11 illustrates the chaining for two
iterations of the PMDA.

Fig. 11. Iterated Perfect Matching Disclosure Attack

In fact, the PMDA can be chained arbitrarily often, each time yielding a
(slight) improvement over the outputs of the previous iteration, and asymptot-
ically approaching the optimal result. The concept of this iterated approach is
know as expectation maximization.

Note, however, that each additional instance of the PMDA implies an increase
of computational cost. Again, it is possible to trade certainty for speed substi-
tuting the PMDA de-anonymization step by the SDA de-anonymization step.
Table 3 presents de-anonymization success rates of a two-instances PMDA and
a two-instances eSDA when applied to U0 and U5 scenarios.
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Table 3. Individual success rates of two-instances PMDA and two-instances eSDA
de-anonymization; all profiles are derived reusing the same set of ρ = 10 000 rounds,
success rates are evaluated from de-anonymization of 5000 rounds

U0 eSDA PMDA
k = 5 80.43 78.67
k = 50 10.47 12.15

U5,2 eSDA PMDA

26.56 60.24

8.2 Normalized Statistical Disclosure Attack

The Normalized Statistical Disclosure Attack, illustrated in Fig. 12, has a similar
structure as the SDA but it additionally constructs the matrix P ′ as in the
PMDA and it includes a matrix normalization step.

Fig. 12. Normalized Statistical Disclosure Attack

We transform P ′ into a doubly stochastic transition matrix that, by definition,
has the property that each row and each column sums up to one. We use the
method proposed by Sinkhorn in [19] in 1964. He showed that an arbitrary
positive N ×N matrix, i.e. each element is greater than zero, can be transformed
into a doubly stochastic matrix by iterative proportional fitting. This means
iteratively normalizing the rows and the columns of the matrix. Sinkhorn also
proved that the iteration converges and has a unique solution.

An element of the normalized transition matrix P ′ represents the probability
of a link between input messages (row) and output messages (column). This
ensures that each sent message is received (all rows sum up to 1) and each
received message was sent (all columns sum up to 1). The receiver of a given
message s is chosen as the one who maximizes the individual link probability
P ′(s, ·).

The normalization step has two important effects on P ′ that stem from the
fact that the iterative proportional fitting spreads the information contained in
each element of P ′ over the entire matrix. The first effect is best explained in a
noise-free toy example. Consider the matrix P ′ before and after normalization

P ′ =

⎛

⎝
0.5 0.5 0
1 0 0
0 0.5 0.5

⎞

⎠ normalize−→

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ .

The per sender maximum likelihood decision approach of the SDA achieves
66.66% success rate when assigning receivers to senders based on the original
version of P ′.
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The normalization process over the matrix P ′ implicitly takes interdepen-
dencies between the matrix elements in different rows and columns into ac-
count and eliminates impossible combinations. In the toy-example, the certainty
P ′(2, 1) = 1 implies P ′(1, 1) = 0. Hence, P ′(1, 2) becomes 1 to fulfill the doubly-
stochastic requirement in the first row. This implies that P (3, 2) becomes also
0 and hence P ′(3, 3) = 1. Therefore, a per sender maximum likelihood decision
approach based on the normalized matrix takes more information into account
and leads to the only correct assignment with success rate one.

To explain the second effect, we use a noisy version of the same initial matrix
P ′ that contains Gaussian noise with standard deviation 0.1

P ′ =

⎛

⎝
0.4006 0.4208 0.1786
0.7810 0.1432 0.0757
0.0997 0.4580 0.4424

⎞

⎠ normalize−→

⎛

⎝
0.2776 0.4369 0.2856
0.6673 0.1834 0.1494
0.0552 0.3798 0.5651

⎞

⎠ .

The per sender maximum likelihood decision of the SDA based on the initial
P ′ leads to the correct assignment for the senders 1 and 2 but to a wrong
assignment for sender 3. Based on P ′ after the normalization step, also the
third assignment is identified correctly. The estimated profiles obtained by an
adversary in a realistic scenario contain noise. The normalization step partially
eliminates this noise yielding more reliable data.

The combination of these two effects allow the NSDA to de-anonymize mes-
sages with a higher success rate than the original SDA. As we show in Table 2,
this attack runs faster than the PMDA for t = 500 and t = 1000, still it achieves
a lower success rate. It is a decision of the adversary which method suits her
purposes best.

8.3 Pool Mix

Finally, we outline how our attack can be applied to a pool mix scenario [17].
Figure 13 depicts a simple example with threshold t = 4 and internal memory of
size n = 4. It also shows the link probabilities between incoming and outgoing
messages according to the formula given by Serjantov and Danezis in [18] in
the upper table, and the relevant part of users’ profiles in the lower table. Such
profiles can be derived, for example, by applying the SDA [7]. We observe two
rounds of the mix. Initially the mix generates two dummy messages p1 and p2

and places them in the pool. After the first round two messages stay in the pool
participating in the second round. After the second round, two messages, p5 and
p6, remain in the pool.

Before one can apply the PMDA to a pool mix, the scenario needs to be
mapped to a bipartite graph. A simple approach for doing so maps each round
individually. The set of sent messages in one round is formed by the messages
actually sent in this round and the messages that remained in the pool after the
previous round. For the first round of our example that is S = {s1, s2, p1, p2}.
Equivalently, the set of received messages is composed of messages that left the
mix and the messages remaining in the pool, i.e. R = {r1, r2, p3, p4}. The initial
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Pmix r1 r2 r3 r4 p5 p6

s1 0.25 0.25 0.125 0.125 0.125 0.125
s2 0.25 0.25 0.125 0.125 0.125 0.125
p1 0.25 0.25 0.125 0.125 0.125 0.125
p2 0.25 0.25 0.125 0.125 0.125 0.125
s3 0 0 0.25 0.25 0.25 0.25
s4 0 0 0.25 0.25 0.25 0.25

rec(r1) rec(r2) rec(r3) rec(r4)
= Eve = Franklin = Charlie = Bob

sen(s1) = Alice 0.25 0.25 0.125 0.125
sen(s2) = Bob 0.25 0.25 0.125 0.125
sen(s3) = Charlie 0 0 0.25 0.25
sen(s4) = David 0 0 0.25 0.25

Fig. 13. Left: two rounds of a pool mix scenario; Right: mix probabilities (upper table)
and user profiles (lower table)

matrix P ′ can then be generated from the mix probabilities given in Fig. 13 on
the upper right side, i.e. P ′(s, r) = Pmix(s, r) for all s ∈ Si, r ∈ Ri, for each
round i. However, as observed from the experimental results in Sect. 6.2, the
uniformity of the entries in this P ′ are bad conditions for an attack to operate
in.

A better approach is to deal with several observed rounds at once and to
compute the probabilities for P ′ globally from starting point to end point. In
our example both rounds can be combined using S = {s1, . . . , s4, p1, p2} and
R = {r1, . . . , r4, p5, p6}. Still we do not expect the attacks to perform well due
to the same reasons as given above.

We propose to additionally combine both sources of information, mix proba-
bilities and user profiles, into P ′. The senders’ choices of their recipients and the
choice of the mix on which messages to output are independent. Therefore, one
computes the joint probability of two choices as the product of the individual
probabilities. We derive P ′ as

P ′(s, r) = Pmix(s, r) · P̃sen(s),SDA(rec(r)) , s ∈ S, r ∈ R .

For completeness we note that the senders of messages which are in the pool at
the beginning of the observation and receivers of messages which are in the pool
at the end of the observation need to be added to the population. The “virtual”
senders are best modeled with a uniform profile while the “virtual” receivers
need to be inserted into all senders’ profiles. Once the initial matrix P ′ has been
generated, the PMDA can be applied to this pool mix scenario.

9 Conclusions

The main drawback of previously published practical Disclosure Attacks is their
susceptibility to changes in the user behavior model. Each of them seems to
be optimized for a specific and restricted scenario. Our first contribution is a
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more general user behavior model, where the number of users’ friends and the
distribution of sending probabilities toward them is not restricted.

Our second contribution is the Perfect Matching Disclosure Attack, that
achieves a high rate of success when tracing messages sent through a thresh-
old mix in arbitrary scenarios. Its accuracy arises from the fact that it considers
information about all senders participating in a round simultaneously, rather
than focusing on individual users iteratively. We empirically compare it with
previous work in terms of effectiveness and show that our proposal yields better
results when de-anonymizing the sender of a given message in a generic scenario.

The second advantage of the PMDA over previous work is its enhanced ability
to estimate user profiles. Concerning a very restrictive user behavior model we
empirically confirm that the PMDA yields a better separation of friends and
non-friends than previous work. With respect to a generic scenario we show that
the PMDA reliably identifies users’ friends when previously proposed methods
fail.

Although the Perfect Matching Disclosure Attack is computationally more
expensive than previously proposed and practical methods, our study of its ef-
ficiency shows that it is indeed practical. A particular promising property of
our proposal is, that it can be parallelized to a high degree. Further, we show
how it can be adapted to different scenarios including pool mixes and how it
can be refined to achieve even better results. A significantly sped-up variant, the
Normalized Statistical Disclosure Attack, yields slightly worse accuracy than the
PMDA but is almost as fast as the original SDA.

Although the new user model presented in this work is more generic than
previous proposals, it is not as versatile as one would desire and most probably
far from real user behavior. More research needs to be performed on the influ-
ence of parameters like the users’ sending rate or its variance over time on the
effectiveness and efficiency of attacks in order to evaluate their impact on real
anonymous communications networks.

Perhaps the most closely related work to ours is the approach toward mea-
suring anonymity proposed in [9]. However, their metric is not self-contained
and can only complement entropy based metrics. Our work on the other hand
aims at pinpointing an adversary’s probability of success though it can also be
used as a complement for the evaluation of anonymous systems. Nevertheless,
both works allow a common conclusion: whether it is to measure anonymity or
to derive strong attack methodologies — considering the perspective of a single
user is not good enough.
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Abstract. We revisit the problem of anonymous communication, in
which users wish to send messages to each other without revealing their
identities. We propose a novel framework to organize and compare an-
onymity definitions. In this framework, we present simple and practical
definitions for anonymous channels in the context of computational in-
distinguishability. The notions seem to capture the intuitive properties
of several types of anonymous channels (Pfitzmann and Köhntopp 2001)
(eg. sender anonymity and unlinkability). We justify these notions by
showing they naturally capture practical scenarios where information is
unavoidably leaked in the system. Then, we compare the notions and
we show they form a natural hierarchy for which we exhibit non-trivial
implications. In particular, we show how to implement stronger notions
from weaker ones using cryptography and dummy traffic – in a provably
optimal way. With these tools, we revisit the security of previous anony-
mous channels protocols, in particular constructions based on broadcast
networks (Blaze et al. 2003), anonymous broadcast (Chaum 1981), and
mix networks (Groth 2003, Nguyen et al. 2004). Our results give generic,
optimal constructions to transform known protocols into new ones that
achieve the strongest notions of anonymity.

1 Introduction

Anonymous channels allow users to send and receive messages without revealing
their identities. There are many applications for such channels, from protecting
“whistle blowers” or guaranteeing source confidentiality in crime tips, to offering
access to medical information to potential patients without fear of embarrassment,
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or protecting voter privacy in electronic voting [23,43]. Chaum [14] initiated the
modern study of anonymous communication by introducing the concept of mix
networks (or mix-nets). A mix-net is a protocol in which messages (say, emails)
traverse several routers (or mixers) and, in the process, are “mixed” with other
messages with the intention that the relation to the original sender be lost. Since
Chaum’s seminal paper, research in the area has been extensive, from concrete
mix-net proposals (see [47, 1, 39, 25, 33, 59] among many others) to very practi-
cal protocols based on mix-nets (eg. [29,34,40,17, 51,19] and references therein).
But mix-nets are not the only method to implement anonymous communication.
DC-nets (also known as anonymous broadcast networks), also proposed also by
Chaum [15] and later improved by many others [10, 57, 58, 32], allow broadcast
of messages without disclosing the sender identity. At least initially, most of the
effort was put into improving the efficiency and reliability of the constructions, so
informal or ad-hoc definitions were common. Indeed, only recently the need for
general (and sound) definitions for these types of primitives has drawn some at-
tention. Furukawa [24] and Nguyen et al. [44], in particular, give strong definitions
for “proving shuffles” (shuffles are the basic mixing operation) and Wikström [59]
presents a formal definition of mix-net in the UC model [13]. These definitions, al-
though helpful in the design and analysis of mix-nets, do not provide a definition
of anonymous channels per se. Indeed, the absence of good anonymity definitions
that capture realistic concerns motivated this work.

Our Contributions: We present a novel framework to organize and compare
anonymity definitions. In this framework, we formalize the notions of unlink-
ability, sender-anonymity, receiver-anonymity, sender-receiver anonymity, and
unobservability, giving them new, strong indistinguishability-based formulations
without compromising the standard “intuitive” meaning they have in the lit-
erature [46]. We also introduce new notions, namely sender unlinkability and
receiver unlinkability. These notions, while arguably weak, can be used to im-
plement some of the stronger notions. Then we formally prove some folklore
results: we show that sender-receiver anonymity implies both sender anonymity
and receiver anonymity, that sender-anonymity and receiver-anonymity (both
separately) imply unlinkability, and that unobservability implies all the other
properties. In the other direction, we present generic black-box transformations
from any “weak” anonymous protocols (eg. sender unlinkability, unlinkability,
or sender anonymity) into protocols anonymous under “stronger” notions (like
sender-receiver anonymity or unobservability). These transformations are prov-
ably optimal in terms of message traffic. We then revisit the anonymity of con-
structions based on broadcast channels, DC-nets and mix-networks, giving an
exact characterization of the anonymity they provide in our framework.

1.1 Coping with Information Leaks

There have been several attempts to characterize the intuitive properties anony-
mous channels should have. Most proposals so far seem to fall into two cat-
egories: (a) they present intuitive but weak definitions (targeted to particular
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applications with efficiency in mind), or (b) they present strong definitions with
often impractical implementations [6,28, 16]. We seek to bridge this gap by pro-
viding strong definitions which can be tailored to specific practical scenarios.

We identify factors or conditions that may realistically limit anonymity. These
conditions are on specific information that, in principle, may be unrealistic to
assume hidden from the adversary. Consider for example,

(a) Total network flow is usually public: the total number of messages sent
in a system is likely to be known to any party in the system, even external
observers.

(b) Amount of traffic per party is hard to conceal: the number of messages
sent or received by a particular party is often easily inferred by an observer
in the party’s network vicinity.

(c) Values sent or received by each party are not necessarily private:
the value of each message1 sent or received by a particular party could be
guessed, known, or even influenced by an adversary.

A proper definition of anonymity should take these “leaks” into account but hide
any additional information: hide everything except what follows from the poten-
tially leaked information. This idea is already present in security definitions of
other cryptographic primitives. For example, if E is a semantically secure encryp-
tion function [30], it is standard to assume a ciphertext E(m) hides all partial
information about a message m except its length |m|. This is because |m| can
only be hidden at the cost of unnecessarily increasing the size of E(m). In fact,
the definitions in this work are inspired by the indistinguishability-based formal-
ization of semantically secure encryption in [30], which guarantees the hiding of
all information on the plaintext other than the plaintext length. Similarly, an
anonymous channel should hide all information about the communication ex-
cept for (some of) the information mentioned above. In this work, we study the
possible combinations of the conditions (a),(b), and (c) above, and analyze the
resulting notions. There are nine (potentially different) notions. Named following
the intuition in [46], they are summarized in Table 1.

Sender Unlinkability and Receiver Unlinkability are the weakest notions of
anonymity we consider. A protocol is sender unlinkable if it hides any relation
between senders and receivers beyond what is implied by the total size of mes-
sages sent by each party and the specific values of the messages received by
each party. Its dual notion is Receiver Unlinkability in which the roles of sender
and receiver are reversed. Compared to Receiver Unlinkability, Sender and Re-
ceiver Unlinkability (or simply Unlinkability) strengthens the requirements for
the sender, hiding the message values sent and received but not necessaruly the
total size of messages exchanged by each party. A stronger notion is Sender
Anonymity as the number and values of messages for the sender must remain
hidden (but not the values of the received messages for each party). Compared to
Sender Anonymity, Receiver Anonymity simply reverses the roles of sender and

1 We distinguish two properties for each message: its value, that is, the data or payload
encoded in the message, and its destination.
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Table 1. Anonymity variants and their associated mnemonic notation. The notation
(X, Y ) encodes what information is not assumed to be protected by the definition
(ie. the meaning of X and Y ), and from whom the information comes: from each sender
(X), or each receiver (Y ). ‘U’ stands for “values of the messages sent/received”,
‘Σ’ for “number of messages sent/received”, ‘#’ for “total number of messages”,
and ‘?’ for “nothing”.

Anonymity Variant Mnemonic Notation

Sender Unlinkability (Σ, U)
Receiver Unlinkability (U, Σ)
Sender-Receiver Unlinkability (Σ, Σ)
Sender Anonymity (?, U)
Receiver Anonymity (U, ?)
Strong Sender Anonymity (?, Σ)
Strong Receiver Anonymity (Σ, ?)
Sender and Receiver Anonymity (#, #)
Unobservability (?, ?)

receiver. Further strengthening of these notions are Strong Sender Anonymity
(resp. Strong Receiver Anonymity) in that protocols can afford to leak at most
the amount of traffic per receiver (resp. per sender). The strongest notions are
Sender-Receiver Anonymity, and Unobservability. They differ in that the for-
mer may not protect the total network flow (ie. the total number of messages
exchanged), while the latter must hide this information.

1.2 Strong, Formal Definitions

We adopt an indistinguishability based formalization under which the adversary
produces two message matrices (which encode message senders and receivers in
a standard way), is allowed to passively observe the execution of a communi-
cation protocol under a random one of these two matrices and then is required
to have non-negligible advantage in determining under which of the two matri-
ces the protocol was executed. Within this framework, each different anonymity
variant is defined by requiring the adversary to produce two matrices whose
“leaked” information is the same. More precisely, if for any message matrix M
the anonymity variant assumes a certain information f(M) may not be pro-
tected (it may be “leaked”), then the two matrices M, M ′ produced by the
adversary must satisfy f(M) = f(M ′). Indeed, the notions corresponding to
the different anonymity variants mentioned in the previous section follow from
instantiating function f with the appropriate function (eg. one that computes
the set of message values sent per party, their number, or the total number of
messages, for example). Our formalisms build on definitional ideas used for en-
cryption [30,42,27] and signatures [31]. Regarding adversaries, an often adopted
adversarial type is that of honest-but-curious (or passive) adversary, one where
the adversary obtains the internal state of the corrupted party, but the party
continues to follow the protocol. For simplicity of exposition, we consider passive
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adversaries with no corruptions (also called outside [20] or global passive adver-
sary [52]) as it captures most of the subtleties of our model. Extensions to allow
(passive) corruptions are discussed in Section 6. We also stress that our results
apply to protocols with fixed number of participants.

Since the adversary can freely choose the values and destinations of all mes-
sages in the protocol (ie. the message matrix), it follows that a protocol anony-
mous under this definition must hide all partial information on the message
matrix M except for what is implied by the known information f(M). In partic-
ular, sources and destinations of the messages are hidden up to the extent that
they do not follow from the known information. This is a quite strong guarantee.

We stress that we present an unified framework for all the proposed anonymity
variants. We believe this facilitates the organization and comparison of the no-
tions as well as future extensions.

1.3 Comparing Notions

The indistinguishability-based definitions presented in this paper appear to cap-
ture the concerns of most intuitive but informal notions of anonymity proposed
in the past [46]. Indeed, in Section 1.4 we argue that previous anonymity for-
malizations in comparable network models are implied by some of the proposed
notions. In addition, we compare the new notions to each other. The comparison
is in terms of reductions. We say notion A implies (is stronger than) notion B if
any protocol satisfying A can be used to achieve B (via a possibly different pro-
tocol).A difficulty arises if we assume point-to-point channels between parties.
In this case, protocols for all notions exist because of general secure multiparty
computation results [6,28, 16], which makes the notions trivially equivalent. To
avoid this pitfall, we assume that the only communication channel between the
parties is an idealized version of a protocol achieving notion A, and then we show
how to implement a protocol that achieves notion B in this setting. The commu-
nication channel is idealized in the sense that parties only see its input/output
behavior. This effectively gives us black-box reductions.
Results: We show three types of reductions between the anonymity defini-
tions: (1) Trivial reductions, in which given a protocol for notion A, the same
protocol achieves notion B, (2) Reductions that use cryptography, and (3) Re-
ductions that use “padding” (or “dummy traffic”). Interestingly, in terms of the
reductions, cryptography and padding do not appear exchangeable. Our results
suggest that in the reductions that require cryptography padding does not help,
while in those where padding is necessary, cryptography does not help.
Trivial Reductions: There exists a partial order of the notions, starting from
the weakest ones, sender unlinkability and receiver unlinkability, and ending
in the strongest one, unobservability, such that if a protocol achieves a cer-
tain notion then the same protocol achieves any weaker notion. These relations
give formal justification to previous informal statements such as sender-receiver
anonymity implying both sender anonymity and receiver anonymity, or that
unobservability implies all the other notions. Interestingly, there is no trivial
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relation between sender anonymity, unlinkability, and receiver anonymity, which
indicates the definitions address incomparable security concerns. In [46], how-
ever, it is argued that Unlinkability (called “relationship anonymity” there) is
a “weaker property than each of sender anonymity and recipient anonymity”.
The disagreement disappears when one notices that, under our definitions, such
relation is true between strong sender (or receiver) anonymity and unlinkability.
Our framework allows us then to clarify an implicit assumption in [46], namely
that messages in the definitions of sender and receiver anonymity are private.
Using Cryptography: Under standard computational and setup assumptions,
we show that anonymity notions that reveal message values are not intrinsically
weaker than those that keep these values private. In particular, we show re-
ductions from unlinkability to sender (or receiver) unlinkability. We also show
strong sender (resp. receiver) anonymity is not weaker than sender (resp. re-
ceiver) anonymity.2 The assumptions are standard, namely PKI and key-private
secure encryption schemes [4].3 The reductions are computationally efficient and
do not have message overhead – they introduce no new messages – therefore
optimal in terms of communication.
Using “Padding”: We conclude showing that our strongest anonymity notions
can be achieved starting from much weaker anonymity notions, but at a cost
of message efficiency. In a nutshell, the reductions show that unobservability,
sender-receiver anonymity, strong sender (or receiver) anonymity, and unlinka-
bility are actually equivalent. They also show that neither sender nor receiver
unlinkability are stronger than sender or receiver anonymity. These reductions
do introduce dummy traffic (ie. extra empty messages) but no more than nec-
essary – they have optimal message overhead. These reductions do not require
computational or setup assumptions, and are computationally efficient.4 The
results are summarized in Fig. 2.

1.4 Comparison with Previous Anonymity Notions

In this section, we compare the proposed variants with anonymity variants sug-
gested previously in the literature. When necessary, we relax those definitions
to match our adversarial model (passive adversaries with no corruptions).
Indistinguishability-based definitions: Beimel and Dolev [3] define ano-
nymity in terms of computational indistinguishability of the adversary’s view
(i.e. the messages and any extra information obtained by the adversary) in two

2 This proof actually justifies the assumption made in [46] mentioned before. We
stress that this is not obvious since anonymity does not necessarily implies message
privacy, or viceversa.

3 In fact, based on preliminary results, we conjecture computational or setup assump-
tions are also necessary.

4 The reductions to Sender Anonymity, Strong Sender Anonymity, and Unobservabil-
ity require the extra (but rather mild) assumption that a known upper bound on the
total network flow exists. See Proposition 4 and remarks at the end of Section 4.2.
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cases: when party Pi sends a message to party Pj , and when Pi′ sends a message
to Pj′ , for any i, j, i′, j′. Given that [3] does present protocols for multiple senders,
we see the definition as somewhat unsatisfactory in the following sense. The
definition does not specify how the messages and destinations for parties Pk �= Pi

are selected. If they are chosen either arbitrarily (but the same for both views)
or with some probability distribution, then we can show they are strictly weaker
than sender-receiver anonymity. The alternative, choosing the inputs for parties
Pk �= Pi, arbitrarily but different in each view, might work (be equivalent to
sender-receiver anonymity) although it is unclear without a formal statement.
A similar concern can be raised on the definition proposed by von Ahn et al. in
the context of k-anonymity [56]. (Essentially the same definition for the case of
a fixed receiver).

Golle and Juels [32] present a definition of anonymity (which they called
privacy) in the context of DC-nets [15]. In the definition in [32], a successful
adversary must distinguish between an execution where P1 sends a message to
some party Pb, and one in which P2 sends a message to some party P1−b, where
b is a bit chosen uniformly at random and unknown to the adversary. The rest
of the parties sends messages as instructed by the adversary. Unfortunately, this
definition suffers from a problem similar to the one above. The adversary is un-
able to exploit possible correlations between the destination of P1’s message and
the destination of some other party P3’s message. Consequently, this definition
can be shown to be strictly weaker than our definition of sender anonymity.
Luckily, the DC-net in [32] is strong enough to be proven sender anonymous (see
Section 5).
Other closely related definitions: Nguyen et al. [44] define privacy of a
shuffle by a similar experiment to ours (a notion called indistinguishability under
chosen permutation attack or IND-CPAS under an active adversary). In their
definition, the adversary chooses two permutations under which the messages
are shuffled and must distinguish which one was used. Translated to our setting,
their definition restricts message matrices to be permutations such that each
party sends exactly a single message. Also, it does not account for the types
of information leaks we consider. The comparison is somewhat unfair, as their
concern – privacy of a single shuffle – is different than ours.

Another related definition was suggested (rather implicitly) by Ishai et al.
in [38]. There, Ishai et al. describe a functionality for anonymous communication
(synchronous setting with rushing). When paired with the appropriate notions
of multiparty computation [12] (under our adversarial model), their definition
becomes a special case of ours, namely Sender Anonymity (SA). Their work [38],
however, does not explore the proposed definition but instead use it to prove the
security of other (non-anonymity related) cryptographic protocols.

Recently and independently from our work, Feigenbaum et al. [22] presented
a definition of anonymity which, although it was specially tailored to the onion-
routing system Tor [19], is closed to ours in spirit. In their work, several vari-
ants of anonymity are defined in terms of indistinguishability of configurations,
where configurations may include values and destination of messages sent by
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parties in the system. When considered under our adversarial model, their def-
inition differs from ours as there the indistinguishability property is explicitly
expressed in terms of circuits (a routing path of a given message sent in any
onion-routing system) and messages/actions on them, while our definition does
not assume onion-routing-type of operation nor any particular underlying com-
munication system. And, while our definition does seem to capture a wider vari-
ety of anonymity variants, the definition in [22] does allow an (arguably) stronger
adversarial model. None of the definitions above incorporates provisions to deal
with “leaked” information on the granularity done in the present work though.

1.5 Related Work

Dolev and Ostrovsky [20] present “xor-trees” protocols, a generalization of DC-
net into a spanning tree, which they prove secure under a notion based on the
concept of anonymity set (see below). Similarly, Pfitzmann [45] proposes the no-
tion of k-anonymity – further developped by [56] – which can be seen as an ex-
tension of the DC-net model to more practical graph structures (which partition
the parties into k-sized autonomous groups). Another approach was proposed
by Rackoff and Simon in [49]. They describe a protocol for anonymous commu-
nication based on sorting networks, which is shown to satisfy some statistical
mixing properties. Relaxations to weaker adversaries were proposed by Reiter
and Rubin [50] and Berman et al. [7]. Both works presented alternative notions
of anonymity as well as efficient constructions assuming an adversary that does
not monitor all communication channels. Camenisch and Lysyanskaya [11] give
a formal definition of onion routing [29] (along a provable secure protocol) but
they explicitly avoid defining anonymous channels.

An alternative characterization of anonymity has been through the concept
of anonymity set [15,40]. The anonymity set is defined as the set of parties that
could have sent a particular message as seen from the adversary [46]. Follow
up works [40, 53, 18] have proposed new characterizations of anonymity, mostly
in terms of the probability distributions the adversary assigns to each party in
order to represent the likelihood such party is the sender of a message. Definitions
based on formal methods have also been proposed [55, 37, 52,41,26]. Finally, it
is worth noticing that Hughes and Shmatikov [36] also present a framework
to formalize and compare different notions of anonymity as done here. Using
the domain-theoretic primitive of function-view they model different notions of
anonymity where information leaks can in principle be factored into the model.
Their results, however, are not inmediately comparable to ours, as they focus
only on non-probabilistic observers (adversaries) while ours can be probabilistic
as long as they are efficiently computable.
Organization: The rest of the paper is organized as follows. Section 2, intro-
duces some notation and details on the execution model. Then, in Section 3,
we present the formal definition of anonymous channels. Section 4 presents im-
plications between the notions as well as proofs of their optimality in terms of
communication. Then, in Section 5, we revisit previously proposed anonymous
protocols and examine their security in the current framework. We conclude in
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Section 6 mentioning some extensions to the model. Due to space constrains,
most proofs are only sketched here. They are provided in the full version [35].

2 Preliminaries

Model and Notation: We consider a system of n parties P1, . . . , Pn, where n is
polynomial in the security parameter k ∈ N, connected to each other by point-to-
point communication channels. We distinguish two (possibly overlapping) types
of parties: senders and receivers. For any two finite sets A and B, let A � B
denote the multiset union (also called sum or join) of A and B, and |A| denote
the size of multiset A. By convention, we assume the i, j-th element of any matrix
M = (mi,j)i,j∈[n] is denoted by mi,j . As usual, MT denotes the transpose of any
matrix M , and mi,∗ = (mi,j)j∈[n] a matrix row.

Messages: We let V = {0, 1}� denote the message space where � = �(k). The
collection of messages sent by parties as well as their destinations is an n × n
matrix M = (mi,j)i,j∈[n], called the message matrix. For row index i and column
index j, mi,j ∈ P(V ) is the (multi)set of messages from party Pi to party Pj .5

The size of matrix M , i.e. the total number of messages sent, is denoted by
|M | def=

∑
i,j∈[n] |mi,j |.

Adversaries and Protocol Execution: In our setting, adversaries are (pos-
sibly external) PPT parties in the system which can passively monitor all the
communication between parties. We consider only passive adversaries that do
not corrupt any party but are able to read (but not alter) all the messages ex-
changed by the parties. A protocol π is a sequence of instructions that all parties
(senders and receivers) must follow. The instructions involve local computations
and point-to-point message exchanges between parties. Our execution model is
a special case of the model presented by Canetti [12] (since we consider only pas-
sive adversaries). Given a message matrix M , we define the execution of protocol
π with input M under adversary A, as the process where each party Pi follows
the instructions of protocol π using as input the i-th row mi,∗ of matrix M . In
this process, we allow the adversary A to obtain a copy of all messages exchanged
in all communication channels. We say protocol π is a message-transmission pro-
tocol if, for any PPT adversary A and any message matrix M , each receiver Pj ’s
local output yj after executing π on input M equals the multiset �j∈[n]mi,j .

3 Security Notions

Our definition is formalized in an indistinguishability-type experiment following
similar approaches used in the formalization of semantically secure encryption

5 Actually, we abuse the notation and we see elements of P(V ) as multisets. This
extension is needed to consider parties that send duplicated messages to the same
receiver (see Section 4.2).
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schemes [5]. We define anonymity via an experiment or game, in which there
are two “worlds” (world 0 and world 1). We allow the adversary to choose the
messages (values and destinations) sent by each party in each world. These
choices are represented by two message matrices M (0) and M (1). Then, world
b ∈ {0, 1} is chosen uniformly at random, and message-transmission protocol π
is executed by all parties on input M (b). We measure the adversary’s success in
terms of her ability to distinguish the two worlds.

Our definition is inspired by the standard game used to define semantically
secure encryption scheme, namely the left-or-right characterization of IND-CPA
[5]. There, the adversary arbitrarily chooses two messages of the same length, is
returned an encryption of a random one of the two messages and then is required
to guess under which message the encryption was generated. The adversary’s in-
ability to distinguish the plaintext underlying in the ciphertext effectively means
she cannot compute any information on the plaintext except its length [30, 5].
Similarly, the definition of our anonymity game guarantees that no information
can be efficiently computed on the destinations of the messages sent during the
protocol.

As mentioned in the introduction, one important difference between our for-
mulation and the left-or-right game mentioned above is that we restrict the
adversary’s choices of the values and destinations of the messages to capture
what is known to the adversary. These restrictions are captured as follows.
Let fU, fΣ, and f# be functions that map matrices M = (mi,j)i,j∈[n] into

P(V )n, Nn, and N respectively, defined by fU(M) def= (�j∈[n]mi,j)i∈[n], fΣ(M) def=

(
∑

j∈[n] |mi,j |)i∈[n], and f#(M) def= |M |. Also, let fT
U (M) def= fU(MT ), and

fT
Σ(M) def= fΣ(MT ). Associated to each function f there is an equivalence rela-

tion Rf ⊂ Mn×n(P(V ))2 where (M, M ′) ∈ Rf if and only if f(M) = f(M ′).
For simplicity, we denote RU = RfU , RT

U = RfT
U

, RΣ = RfΣ ,RT
Σ = RfT

Σ
, and

R# = Rf# .
We are now ready to present the main definition. Given an n-party message-

transmission protocol π, an adversary A, and label N ∈ {SUL, RUL, UL, SA, RA,
SA∗, RA∗, SRA, UO}, consider the experiment ExpN−anon

π,A (k) described below.
The experiment is parameterized by label N, which determines the relation RN

considered. Relation RN is defined in terms of RU,RT
U ,RΣ ,RT

Σ and R# according
to the table in Fig. 1. We define the success probability of adversary A attacking
protocol π under notion N as AdvN−anon

π,A (k) def= 2 ·Pr
[
ExpN−anon

π,A (k) = 1
]
−1

where the experiment is defined as follows:

Experiment ExpN−anon
π,A (k)

b
R← {0, 1}, and 〈M (0), M (1)〉 ← A(k)

if 〈M (0), M (1)〉 /∈ RN then return 0
else Execute π on input M (b) under adversary A until A outputs a bit g.

if (b = g) return 1 else return 0
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N Notion Description of RN

SUL Sender Unlinkability RSUL
def
= RΣ ∩ RT

U

RUL Receiver Unlinkability RRUL
def
= RU ∩ RT

Σ

UL Unlinkability RUL
def
= RΣ ∩ RT

Σ

SA Sender Anonymity RSA
def
= RT

U

RA Receiver Anonymity RRA
def
= RU

SA∗ Strong Sender Anonymity RSA∗
def
= RT

Σ

RA∗ Strong Receiver Anonymity RRA∗
def
= RΣ

SRA Sender-Receiver Anonymity RSRA
def
= R#

UO Unobservability RUO
def
= Mn×n(P(V ))2

Fig. 1. Anonymity variants and their associated relations RN

Definition 1. (Anonymous Channels) A message-transmission protocol π
achieves N-anonymity for N ∈ {SUL, RUL, UL, SA, RA, SA∗, RA∗, SRA, UO}, if
for all PPT adversaries A, the quantity AdvN−anon

π,A (k) is negligible in k ∈ N.

4 Relation between the Notions

In this section, we show implications between the notions. We start by formal-
izing the type of reduction we use.
Black-box implications: As mentioned before, we consider a simplified net-
work where the only communication channel between the parties is an idealized
implementation of a protocol satisfying a certain anonymity notion N1. We say
notion N1 implies notion N2 (or alternatively that N2 reduces to N1), denoted
by N1 → N2, if there exists a protocol θ(·) (with access to the idealized com-
munication channel) such that, for every protocol π, the following holds: if π
achieves N1-anonymity, then θπ achieves N2-anonymity.
Results: Our results are summarized in Fig. 2. We first describe some easy
implications, most of them folklore results, which until now remained without
formal proof. An interesting aspect of the result is that the transformation which
enables the reductions is the identity function. Therefore, some definitions are
stronger than others in the sense that any protocol achieving one definition also
achieves the other one.

Proposition 1. The following implications hold unconditionally UO → SRA →
SA∗ → SA → SUL, SRA → RA∗ → RA → RUL, SA∗ → UL → RUL and RA∗ →
UL → SUL.

4.1 Implications under Computational Assumptions

In this section, we show that, under some standard setup and computational
assumptions (namely PKI and key-private secure encryption [30,4]), some of the
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UL

(Σ, Σ)

SA

(?, U)
SA∗

(?, Σ)

RA∗

(Σ, ?)

SRA

(#, #)

RUL

(U, Σ)

UO

(?, ?)

SUL

(Σ, U)

RA

(U, ?)

D2Sink

D2All

D2All

D2All

Comp

Comp

Triv

Comp

Comp

D2Sink

Triv

Triv

Triv

Triv

Triv

Triv

Triv
Triv

Triv

Triv

D2Sink

Fig. 2. Relations among notions of anonymity. Arrows labeled Triv denote trivial im-
plications (Proposition 1) and those labeled Comp denote implications under computa-
tional assumptions (Lemma 1). Arrows labeled D2Sink and D2All denote implications
that use the transformation of the same name (Proposition 4 and Proposition 5 respec-
tively). Implications obtained by transitivity are not drawn.

notions are equivalent in the sense that a protocol achieving one definition can
be efficiently transformed into a similar protocol achieving the other definition.
In particular, RUL,SUL, and UL are all equivalent, as well as SA and SA∗, and
RA and RA∗. Due to space restrictions, the assumptions are formalized in [35].

Lemma 1. Assume key-private semantically secure public-key encryption
schemes and PKI exist. Then SUL → UL, RUL → UL, SA → SA∗ and RA → RA∗.

For each implication of the lemma, the structure of the proof is the same and is
divided into two steps. To prove that notion N implies notion N′, we first define
an intermediate notion, called I-N-anonymity (or value oblivious N-anonymity,
which we prove is implied by N, that is, N → I-N. Then, we prove that I-N→ N′.
Interestingly, the proof that N → I-N is the same for N ∈ {SUL, RUL, SA, RA},
so we present it only once, first. The new notions, although somewhat technical,
are the natural extensions of relations RU and RT

U to capture indistinguishability
of the values instead of equality. Proving that the resulting notion I-N is in fact
implied by the original notion N is nonetheless non-trivial.

Let N ∈ {SUL, RUL, SA, RA}. Given N-anonymity, we define notion I-N-
anonymity using an experiment similar to that underlying the definition of N-
anonymity. In fact, the only difference is that the adversary can specify two PPT
sampling algorithms G(0) and G(1) from where the elements of the challenge ma-
trices M (0), M (1) are drawn. The only restriction is that G(0) and G(1) must in-
duce computationally indistinguishable ensembles.6 Intuitively, this experiment
6 At first look, this type of adversary may seem artificial, as the restrictions on the

sampling algorithms cannot be efficiently tested. Nonetheless, this is all we need, as
Proposition 3 shows that for each implication I-N → N′ any N′-adversary can be
transformed into this type of I-N-adversary, which in turn Proposition 2 shows can
be mapped into an “regular” N-adversary.
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decouples the adversary’s control over message values and message destinations.
Matrices M (0), M (1) specify the adversarial choices for sources and destinations
of messages, while the sampling pair (G(0), G(1)) specifies distributions for the
message values. Details follow.

Let k ∈ N be a security parameter. For simplicity, assume that each party
only sends a single message to each other party.7 Two algorithms G(0)(·, ·) and
G(1)(·, ·) form an indistinguishable sampling pair if each is PPT on the first
input, and the ensembles

{
G(0)(k, a)

}
k∈N,a∈V

and
{
G(1)(k, a)

}
k∈N,a∈V

are com-
putational indistinguishable. We say PPT algorithm A is a legal adversary if, on
input k, A’s first output is a tuple (M (0), M (1), 〈G(0)〉, 〈G(1)〉) where M (0), M (1)

are message matrices and 〈G(0)〉, 〈G(1)〉 is the encoding of an indistinguishable
sampling pair. Given a legal adversary A, we define the experiment ExpI-N−anon

π,A

as described below. The corresponding success probability AdvI-N−anon
π,A (k) of

adversary A is defined in the usual way.

Experiment ExpI-N−anon
π,A (k)

b
R← {0, 1}, and (M (0), M (1), 〈G(0)〉, 〈G(1)〉) ← A(k)

if (M (0), M (1)) �∈ RN then return 0
else Parse M (0) as (m(0)

i,j )i,j∈[n] and M (1) as (m(1)
i,j )i,j∈[n]

For all i, j ∈ [n], all d = 0, 1,
if m

(d)
i,j �= ∅, then set m̄

(d)
i,j

R← G(d)(k, m
(d)
i,j ), or m̄

(d)
i,j ← ∅ otherwise.

M̄ (0) ← (m̄(0)
i,j )i,j∈[n] and M̄ (1) ← (m̄(1)

i,j )i,j∈[n]

Execute π on input M̄ (b) under adversary A until A outputs a bit g.
if (b = g) return 1 else return 0

For completeness, the formal definition is presented next.

Definition 2. Let N ∈ {SUL, RUL, SA, RA}. A message-transmission proto-
col π achieves I-N-anonymity if for all legal PPT adversaries A, the quantity
AdvI-N−anon

π,A (k) is negligible in k ∈ N.

We obtain the result of the lemma from the following two propositions. The
first one shows that N → I-N for any notion N ∈ {SUL, RUL, SA, RA}, and the
second one proves the results of the lemma starting from I-N. Intuitively, this
proposition states that the adversary’s ability to choose the input values for the
messages does not weaken the notion of anonymity.

Proposition 2. Let N ∈ {SUL, RUL, SA, RA}, and let π be a message-transmis-
sion protocol that achieves N-anonymity. Then, π achieves I-N-anonymity.

Given any I-N-anonymous protocol π for N ∈ {SUL, RUL, SA, RA}, the simple
transformation consisting of encrypting (under a key-private encryption scheme
[4]) each message under the public key of the recipient produces a protocol that
can achieve a stronger anonymity notion. Indeed, next proposition simply shows

7 The implications still hold if more than one message is exchanged between each pair
of parties although the proof becomes a little more involved.



An Indistinguishability-Based Characterization of Anonymous Channels 37

that breaking the stronger notion gives raise to a legal adversary for the weaker
notion I-N. The details and proof are in the full version [35].

Proposition 3. Assume a semantically secure public-key encryption scheme ex-
ists [30]. Then I-SUL → UL, and I-SA → SA∗. Moreover, if the encryption
scheme is key-private [4], then I-RUL → UL, and I-RA → RA∗.

Proof (Lemma 1). It follows directly from combining Proposition 2 and 3.

4.2 Implications That Require “Dummy Traffic”

In this section, we show that notions UL, SA∗, RA∗, SRA, and UO are equivalent
under reductions that involve sending dummy traffic. Notions SUL and SA, as
well as RUL and RA are also equivalent.

Let D2Sink be the following protocol transformation. Given a message-trans-
mission protocol π, output another protocol that operates like π but where each
sender transmits additional empty messages to a fixed party (the “sink”) until
the sender’s total number equals a given constant μN. The next proposition
shows D2Sink can be used to achieve stronger notions of anonymity. The reader
is referred to the full version [35] for details.

Proposition 4. Assume the total number of messages in any protocol for the
notions SA, SA∗, and UO is upper bounded by a publicly known value μN. Then,
SUL→SA, UL→SA∗, and RA∗→UO.

Similarly, let D2All be the transformation that instructs senders to transmit
one dummy message to everyone else per each valid message to be sent. D2All
is used to prove the following implications.

Proposition 5. RUL→RA, UL→RA∗, and SA∗→SRA.

4.3 Message Overhead and Optimality of the Transformations

The black-box transformations D2Sink of Proposition 4 and D2All of Proposi-
tion 5 output protocols that use “dummy” messages (those whose value is “⊥”
which are ultimately discarded). These messages increase the communication
complexity of the protocol, so it is interesting to ask if there are better solu-
tions, possibly based on cryptographic tools. Interestingly, we show that the
single transformations D2Sink and D2All described in previous section cannot
be substantially improved, even in the presence of PKI.

Thus, we explore the question of whether more message efficient transfor-
mations exist, in terms of generating protocols where fewer messages (dummy
or not) are sent overall.8 For simplicity, we consider transformations where the
8 Recall that we say a message m is sent by a message-transmission protocol Π if

m is an element of the message matrix given to the protocol Π as input. This
message should not be confused with the packets sent over the point-to-point com-
munication channels between the parties as the result of a particular implementation
of Π .
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input protocol is invoked via a black-box call only once; the general case is
discussed at the end of the section.

Let T be a transformation that maps a protocol ω into another protocol δω
T . We

measure message overhead by counting the number of extra messages that any
protocol δω

T
def= T(ω) adds on the underlying (black-box) protocol π. Concretely,

given two transformations T1, T2, we say T1 has less message overhead than T2

if protocols δω
T1 = T1(ω) and δω

T2 = T2(ω) when executed on the same input
matrix M require subprotocol ω to send t1 (resp. t2) messages when invoked
as part of δω

T1 (resp. δω
T2), where t1 < t2 for any protocol ω. More formally, let

M = (mi,j)i,j∈[n] be a message matrix, and denote by δ
[·]
T (M) ∈ Mn×n(P(V ))

the message matrix on which the black-box protocol (say ω) is invoked via a
black-box call during the execution of δω

T on input matrix M . We stress that
once M is fixed, matrix δ

[·]
T (M) is well-defined, independently of the message-

transmission protocol ω, as ω is invoked as black-box by δω
T exactly once.

Definition 3. Let (N′,N) ∈ {(SUL, SA), (RUL, RA), (UL, SA∗), (UL, RA∗),
(RA∗, SRA), (SA∗, SRA)}, and T be any transformation underlying implication
N′ → N. The message overhead of T is ovh(T) def= maxM

{∣
∣
∣δ

[·]
T (M)

∣
∣
∣ /|M |

}
where

the maximum is taken over all (allowed) non-empty message matrices M for no-
tion N.

It is easy to see that, under the assumption that the total number of messages
sent is at most μN, ovh(D2Sink) = n · μN. Similarly, but under no assumptions,
ovh(D2All) = n. The next two propositions show that we cannot do better. The
proof is by contradiction which is derived from the fact that if there are “too
few” messages sent by a party, the underlying black-box protocol may no longer
be invoked in a secure way. For Proposition 7, the construction and analysis are
similar but considering the number of messages received by any party.

Proposition 6. D2Sink is optimal for SUL→SA, UL→SA∗, and RA∗→UO.

Proposition 7. D2All is optimal for RUL→RA, UL→RA∗, and SA∗→SRA.

Upper bound per Sender: A similar analysis holds if a bound μ̂N on the
number of messages per sender is assumed instead, for SA and SA∗-anonymity.
(We stress that the implication SA → SA∗ of Lemma 1 is preserved under this
restriction). In this case the overhead is n·μ̂N, which is also optimal. This formu-
lation, although more restrictive, can be more suitable for certain applications.9

From a theoretical point, however, it is not clear if there is any advantage to this
formulation over the one presented above.
Single vs. Multiple black-box calls: If we consider transformations that
output protocols that invoke the input (black-box) protocol more than once, then
is it possible to prove that the optimal overhead is n. A protocol δπ that achieves
9 Upper bounds on the number of messages sent per party may help to prevent certain

flooding attacks against mix nets [34,52].
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this is the one that uses a secure multiparty computation protocol (eg. [6]) to
compute |M | using π as communication channel; then, each party calls ensures
it sends |M | messages via π by adding sufficient dummy messages. Even though
such a secure multiparty protocol can be computed with constant number of
invocations to π [2] (and thus, O(n2) messages), it is likely that invoking π more
than once will render the resulting protocol impractical.

5 On the Anonymity of Previous Protocols

The ultimate purpose of a definition is to be used to properly characterize the secu-
rity of concrete protocols. Accordingly, we revisit the security of known construc-
tions based on broadcast channels [8], DC-nets or anonymous networks [15,32,54],
and mix-nets [33,44,24]. In Section 5, we examine the basic construction of Blaze
et al. [8], which is based on broadcast channels, and we argue it can be shown strong
receiver anonymous. We also discuss the DC-nets of [32] and sketch how the con-
struction there can be proven sender anonymous. Finally, we highlight sufficient
conditions to prove the strong receiver anonymity of mix-net constructions based
on shuffles [33, 44]. (We only sketch these claims due to space constrains. Proofs
are provided in the full version.) By combining the constructions that underlie the
implications of previous sections, we obtain anonymous protocols provably secure
under the strongest notions: sender-receiver anonymity and unobservability.
Broadcast Networks: Broadcast channels can be used as a straightforward
approach to obtain some form of receiver anonymity [48]. In general, the most
obvious protocol of transmitting a message over the broadcast channel is trivially
RA-anonymous. Blaze et al. [8] recently suggested a protocol for anonymous
routing in the context of wireless networks. Very roughly, their basic protocol
is an adaptation of onion routing [29] to broadcast networks. The operation of
sending a message is then analogous, and involves computing a path of routers,
and a corresponding onion (a nested encryption) of the message (see [8] for
details). The difference is that each transmission of the “onion” between routers
is done via the broadcast channel, so all receivers attempt to decrypt the onion
but only the intended recipient succeeds (although not mentioned, some integrity
mechanism must be used in the onion). Under passive global adversaries, if the
encryption used provides key-privacy [4],10 the protocol can easily be shown
RA∗-anonymous. However, due to the shared nature of the wireless medium,
transforming it into a UO-secure protocol may not be practical given the message
overhead (unavoidable by Proposition 6).
DC-nets or Anonymous Broadcast: DC-nets [15,32] can be seen as partic-
ular instances of anonymous broadcast protocols [54]. In these protocols, there
is a single message sent which is public. In [32], Golle and Juels proposed very
efficient anonymous broadcast protocol based on pairings. Whenever a trans-
mission is to take place, all parties participate in the protocol by transmitting
“pads”. Each pad contains the (potentially empty) message the party intends

10 This requirement apparently was overlooked in [8].
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to transmit. Golle and Juels show how to combine the pads so the transmitted
messages are recovered with high probability (and therefore theirs is a message-
transmission protocol with high probability). They also show how each party can
provide a non-interactive zero-knowledge (NIZK) proof [21] for the correctness
of her pad without revealing the underlying message. By the simulatability of
the NIZK proof, it then follows that their protocol can be proven SA-anonymous
under global passive adversaries as long as the Bilinear Diffie-Hellman assump-
tion [9] holds. Notice that this result is not implied by their security proof as
the anonymity notion used in [32] is arguably different (see Section 1.4).
MIX networks: Robust and efficient MIX-net constructions can be built from
efficient schemes to prove a shuffle [25,33,44]. In these constructions, each mixer
proves the correctness of the shuffle operation (usually a random permutation and
sometimes partial decryption) was done correctly. The resulting mix-net protocol
may work as follows: first, all senders send encryptions of their messages to the
first mixer (the encryptions are made under a threshold key shared by the mix-
ers). Then, the mixing process starts where each mixer performs (and proves) her
shuffle passing the resulting vector to the next mixer. The last mixer broadcast the
resulting vector. The shuffles in [33] and [24, Appendix A] can be proven honest
verifier zero-knowledge (HVZK) arguments. The shuffles in [25,44] can be shown
to satisfy the stronger property IND-CPAS [44]. Under passive adversaries, both
properties suffice to prove the adversary cannot distinguish two executions of the
associated mix-nets even under adversarial inputs. Assuming the last mixer broad-
casts the output, these constructions can then be proven RA∗-secure.

6 Variants and Extensions

k-anonymity: Intuitively, a protocol achieves k-anonymity if any adversary
trying to determine the sender (resp. receiver) of a message can only narrow the
sender’s identity down to no less than k possible senders (resp. receivers). The
concept was proposed by Pfitzmann [45] and further developped (along with
efficient constructions) by von Ahn et al. [56] as a way to improve the efficiency
of DC-nets. We can accommodate the notion of k-anonymity in our framework
by further restricting the relation RN. For each of the message matrices output
by the adversary we require at least k non-empty rows (resp. columns) to capture
the restriction to k senders (resp. receivers).
Passive Adversaries with corruptions: As mentioned before, it is possible
to extend our framework to consider party corruptions. The adversary would
be allowed to passively (either statically or dynamically) corrupt senders and
receivers, with the obvious restrictions that the local inputs and outputs corre-
sponding to the corrupted parties must be the same in the two message matrices
output by the adversary. Note that this conditions immediately hold if the cor-
rupted party that does not send or receive messages and only acts as forwarder
(router). The security proofs for the protocols mentioned in previous section
carry to this stronger model. Extending our framework beyond passive attacks
(active adversaries) is currently part of ongoing research.
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Abstract. This paper studies anonymity in a setting where individuals
who communicate with each other over an anonymous channel are also
members of a social network. In this setting the social network graph
is known to the attacker. We propose a Bayesian method to combine
multiple available sources of information and obtain an overall measure
of anonymity. We study the effects of network size and find that in this
case anonymity degrades when the network grows. We also consider ad-
versaries with incomplete or erroneous information; characterize their
knowledge of the social network by its quantity, quality and depth; and
discuss the implications of these properties for anonymity.

1 Introduction

In the last few years defining and quantifying anonymity in the context of com-
munication networks has been a hot research topic. A substantial set of papers
focus on the definition of anonymity, others present designs and analysis of new
anonymous communication systems or attacks of existing ones. Yet more focus
on the theory of mix systems in order to improve our fundamental understanding
of anonymity properties which are possible or practically achievable. This paper
takes the fine line between theory and practice and attempts to evaluate the
anonymity properties of an abstract anonymous communication system within
the practical context of a social network.

We consider the anonymity of users belonging to a social network who com-
municate with each other via anonymous messages. The attacker is the global
passive adversary (she observes the inputs and outputs of the anonymous com-
munication network) and also has knowledge of the users’ profiles. First we
consider the two sources of information available to the adversary separately,
then we combine them and examine what happens as the network grows. Inter-
estingly, it turns out that the details of the mixing algorithm employed by the
anonymous communication system play a significant role. Next, we briefly show
how additional sources of information can be used by the attacker to further
reduce anonymity. Finally, we look at how the quantity, quality and depth of
knowledge about the users’ relationships affects our results.

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 44–62, 2008.
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Our main contribution is evaluating how the uncertainty in the attacker’s
knowledge of user profiles affects anonymity. Indeed, we show that arbitrarily
small errors in the profiles can lead to arbitrarily large errors in the anonymity
probability distribution and hence point to the wrong subjects in the anonymity
set. We develop the intuition behind this result and evaluate the errors in the
anonymity probability distributions in the context of the social network. We con-
duct our experiments by simulation which helps us examine realistic scenarios.

2 Related Work

This paper belongs to a growing body ofwork focusing on the anonymity analysis of
anonymous communication systems. A substantialpart of this literature consists of
papers evaluating the effectivenessofmix-basedanonymity systems ina theoretical
setting;e.g., [6,11,18].Suchworkofteninvolvesassumptionssuchas“userspicktheir
communicationpartners uniformlyat random”whichhelpwith themathematicsof
calculating anonymity, and hence aid our understanding and intuition, but do not
necessarily hold in practice. Furthermore, the authors often examine properties of
the anonymous communication systems and shy away from incorporating models
of users. This paper takes a more practical approach by assuming a social network,
deriving the attacker’s knowledge about users based on the fact that they belong to
such anetwork and then evaluating the performance of the anonymous communica-
tion system in the context of this knowledge. Furthermore, we evaluate how errors
in the information gained from the social network influence the correctness of the
anonymity (and thus, the attacker’s confidence in her result).

In order to evaluate anonymity in a practical setting, it is necessary to in-
corporate a priori information the attacker might have about communication
patterns of users. We briefly mention a number of papers that explore related
research problems. Diaz et al. [9] assume that some information on user proper-
ties is known, such that the user base can be partitioned in different groups that
share a similar profile. Clauß et al. [3, 4] propose a framework and metrics for
systems where the adversary has some information on user attributes. In these
papers the focus is on user properties or profiles, and little effort is made to
combine the knowledge gained through traffic analysis with the profile informa-
tion available to the attacker. In [3,4], it is mentioned that the communication
layer information gained through traffic analysis can be modeled by means of at-
tributes, but no concrete example is given of how this could be realized. Finally,
Diaz et al. [13] showed a toy example where the combination of user sending
profiles and data gathered through traffic analysis resulted in higher anonymity,
contradicting what had been claimed in [4]. However, no general methodology
was given in [13] for computing anonymity metrics when several sources of infor-
mation are available. The most closely related paper which attempts to combine
knowledge about profiles with traffic analysis information is [8] where a lot of
the Bayesian theory we use is presented, but only a brief demonstration of the
technique is given. Here we give a number of practical examples and evaluate
the impact of errors in the profiles on anonymity.
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Perhaps the most related piece of related work in terms of the spirit of the
analysis and in the style of the results obtained is one of Dingledine and Matthew-
son [16]. They employ simulations in order to evaluate the effectiveness of sta-
tistical disclosure attacks on a model of an anonymity system; i.e., they attempt
to recover profiles from the communications data while we build assumptions
about profiles from the social network and then add the communications data
on top.

3 Preliminaries

3.1 System and Attacker Model

We consider a system where a set U of N users send messages to each other
through an anonymous communication channel modeled as a mix1. Since Chaum
[2] first proposed mixes for achieving anonymous communication in 1981, mul-
tiple designs have been proposed in the literature both for low-latency commu-
nication, e.g. [14] and for high-latency, message-based communication [5,7, 15].

The adversary we consider can observe all input messages arriving to the mix
(and their respective senders), as well as all output messages leaving the mix (and
their recipients), but not the internal operations of the mix. Naturally, the mes-
sages are encrypted so the content is hidden. Although the attacker does not know
the correspondence between inputs and outputs, she is able to compute the prob-
ability distributions linking every input with all possible outputs and vice versa.

In addition to observing the mix inputs and outputs, the adversary has a
priori knowledge of the users’ sending behavior. We assume users to be linked
via a social network, and that users send messages to those who are in their
profile; i.e., their set of “friends.” We have used various methods to generate the
user sending profiles, which are described in detail in Appendix A.

3.2 Anonymity with One Source of Information

We draw on the literature, more specifically [12] and [17] for our definition of
anonymity. The basic idea of these metrics is to use the Shannon entropy [19] of
the probability distribution linking subjects to a message or action (normalized
entropy in the case of [12]). The entropy of this probability distribution gives
a measure of the uncertainty concerning the identity of the subject who origi-
nated/received a message. Entropy-based anonymity metrics take into account
both the number of users in the system and their probabilities of being linked
to a particular action, and anonymity increases both with the number of users
and the uniformity of the probability distribution linking them to messages.

The goal of our adversary is to identify the recipient of messages arriving
to the mix (recipient anonymity) or the sender of messages leaving it (sender

1 Our analysis and experiments apply to any abstract anonymous communication
channel for which probabilistic relationships between inputs and outputs can be
derived.
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anonymity). Therefore, the adversary makes hypotheses of the type “hypothesis
hj is true if uj is the sender (recipient) of this outgoing (incoming) message,”
and computes the probability Pr(hj) that hj is true. Given that every mes-
sage has one sender and one recipient, the probabilities Pr(hj) sum to one (i.e.,
∑N

j=1 Pr(hj) = 1).
In this paper we use the effective anonymity set size [17] as the metric for

sender and recipient anonymity. For a given message entering (leaving) the
mix, the recipient (sender) anonymity A is given by the Shannon entropy of
the probability distribution of each of the hypotheses hj being true; i.e., A =
−

∑N
j=1 Pr(hj) log2(Pr(hj)).

Let us first illustrate how anonymity is computed when only one source of
information is available to the attacker. If the attacker knows the sending profiles
of users, but cannot observe the inputs and outputs of the mix, the recipient
anonymity of a message sent by user u belonging to the user population U is
given by the entropy of her sending profile. That is, if u chooses user uj as her
recipient with probability Pr(u → uj), then the recipient anonymity provided
by u’s profile is Ap = −

∑N
j=1 Pr(u → uj) log2(Pr(u → uj)). Conversely, when u

receives a message, the anonymity of the sender is given by Ap = −
∑N

j=1 Pr(u ←
uj) log2(Pr(u ← uj)), where Pr(u ← uj) = Pr(uj→u)

∑
N
k=1 Pr(uk→u)

is the probability of
uj being the sender of a message received by u. In the remainder, we denote
the sending profile of a user u as P (u → U) = {Pr(u → uj), ∀uj ∈ U} and its
recipient profile as P (u ← U) = {Pr(u ← uj), ∀uj ∈ U}.

Alternatively, we can consider an adversary who can see the inputs/outputs
of the mix but does not have a priori knowledge of user profiles. The probability
of an input (output) message matching each of the outputs (inputs) depends on
the type of mix, overall traffic load and the timing of messages. Let us consider
a timed pool mix. Pool mixes work in cycles called rounds that comprise three
steps (1) collect: it collects messages from senders for a period of time T ; (2)
store: upon being received, messages are decrypted with the mix’s private key
(which allows it to retrieve the destination address), and stored in an internal
memory called pool ; and (3) flush: once the timeout T has expired, a fraction
of the messages are randomly selected and sent to their destinations, while the
rest is kept in the pool for the next round.

The probabilities of matching the mix inputs and outputs are computed as
follows [10]. Let mr be the number of messages contained in the mix in round
r (prior to the mix flushing), and sr be the number of messages sent by the
mix in round r. If a message M arrived to the mix in round r, its probability
Pr(M = Or′,i) of matching each of the sr′ outputs Or′,i that left the mix in
round r′ is:

Pr(M = Or′,i) = 0 if r′ < r

Pr(M = Or′,i) =
1

mr′
if r′ = r

Pr(M = Or′,i) =
1

mr′

r′−1∏

k=r

(1 − sk

mk
) if r′ > r
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The recipient anonymity Am provided by the mix to message M is given by
the entropy of the probabilities Pr(M = Or′,i). The computation of the probabil-
ities Pr(Ir′,i = M) linking an output M to all possible inputs Ir′,i is analogous,
and their detailed derivation can be found in [10]. Note that probabilistic re-
lationships between inputs and outputs can also be derived for other types of
mixes such as Stop-and-Go [15].

3.3 Anonymity with Several Sources of Information

Bayesian inference is an approach to statistics in which all forms of uncertainty
are expressed in terms of probability. It starts with an initial set of beliefs repre-
sented by an a priori probability distribution, which is updated as new evidence
is collected. The distribution indicates how likely it is for a hypothesis to be
true.

Let hj be the hypothesis that user uj is the sender (or recipient) of a given
message received (or sent) by user u, and Pr(hj) the prior probability of this
hypothesis being true. Let E be some evidence or observation that gives us
additional information on the truthfulness of hj , and Pr(E|hj) be the probability
of observing evidence E conditioned to hj being true. Bayesian inference can be
used to compute the posterior probability Pr(hj |E) of hj , given that we have
obtained evidence E. We denote this probability distribution by P (H |E) =
{Pr(hj |E), 1 ≤ j ≤ N}:

Pr(hj |E) =
Pr(hj) Pr(E|hj)

∑N
k=1 Pr(hk)Pr(E|hk)

In our setting, we consider that both sender profiles and mix input/output
observations are available to the adversary. The prior probability Pr(hj) is given
by the sending profiles of users, and corresponds to Pr(a → uj) in the case
of recipient anonymity, and to Pr(a ← uj) for sender anonymity (as explained
in the previous section). The conditional probability Pr(E|hj) is computed as
follows. For recipient anonymity (analogous for sender anonymity), let Rj be the
set of messages received by user uj . Given that u sent message M to uj (i.e.,
hj is true), the probability Pr(E|hj) of observing the evidence E corresponds to
the probability of the mix matching M to one of the messages received by uj:

Pr(E|hj) =
∑

Or′,i∈Rj

Pr(M = Or′,i)

Bayesian inference can be applied recursively if new independent evidence E′

becomes available to the adversary. We show results that introduce an additional
source of information in Sect. 5.2.

4 Analysis

4.1 Intuition

The attackers’ knowledge about the communication partners of users inside the
social network comes from two sources—observing the mix and her a priori
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knowledge of the user profiles. Naturally, if we have a perfectly anonymous com-
munication layer, the anonymity of the system comes only from the attacker’s
(lack of) information about the profiles. Conversely if the attacker has no infor-
mation on the profiles of the users, she is restricted to observing the commu-
nications layer; i.e., the mix. The more complex setting when the attacker has
knowledge of both is examined below.

Consider the case of users belonging to a vast social network and hence know-
ing a tiny fraction of the overall user population. In our model the attacker
can see the inputs and the outputs of the mix and knows the profiles of all the
users, so the only mixing that will take place is that between senders who share
potential recipients or between recipients who share potential senders. Hence if
the network grows and users’ connectivity remains constant, anonymity falls. On
the other hand, higher traffic load and number of users increase the anonymity
provided by the mix. In Sect. 5.1 we show the tradeoff between these two effects.

The increasing popularity of blogs and, more generally, the availability of
user-generated content makes it easy to gather a corpus of text linkable to an in-
dividual. Different people have different writing styles and patterns (such as word
frequency or preferred grammatical constructions), and statistical tests that de-
tect these patterns can be used to help identifying the authors of anonymous
text. We study in Sect. 5.2 how the results of such a test can be combined with
profiles and traffic analysis information, and its impact on sender anonymity.

The attacker’s knowledge of the social network can vary in its quantity, quality
and depth. She may know only of existence of links between individuals, the
extent of those links, lack knowledge of links in some part of the network and
hence have to make do with approximations or, worst of all, assume wrong
information. We assess the impact of each of these on anonymity in Sections 5.3,
5.4 and 5.5. Before proceeding to the results of the analysis, we give details of
our experimental setup.

4.2 Experimental Setup

We performed the analysis in the setting of a social network with a population
of users arranged in a small-world network constructed following the Watts-
Strogatz algorithm [21]. We also performed experiments on a scale free net-
work [1] created with preferential attachment and the same number of average
users, and the only noticeable difference was a larger variance in the results,
which is due to the more uneven distribution of links per node in these net-
works. Unless indicated otherwise, we consider in our experiments 1000 users
with an average of 20 friends each, arranged in a small world network with
parameter p = 0.1 (i.e., highly clustered).

Users send messages only to their friends (i.e., users linked to them in the
social network) with the probability specified in their profile. For the purposes
of our experiments, we have developed several sets of user profiles with slightly
different probability distributions. A detailed summary of the profiles used and
the algorithms used to generate them can be found in Appendix A.
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We chose a Mixmaster [5, 20] mix, as it is the most widely deployed high-
latency network for anonymous email. The time intervals between users sending
messages follow an exponential distribution with parameter λ, common to all
users. We have chosen 1/λ to be 25 times greater than the timeout of the mix,
so if users send messages on average once a day, the expected delay is between
30 mins and 1 hour. In every experiment we simulate 130 rounds of mixing. We
then extract the information which could have been observed by the attacker
and compute the sender and receiver anonymity of each message.

5 Results

5.1 Growing the Network

In this section we consider the anonymity of users as the social network is scaled
up. To help develop the intuition we show the anonymity calculated from traffic
analysis (mix input/output observations) and knowledge of the profiles sepa-
rately. As the network grows, the anonymity provided by the mix increases as
shown in Fig. 1(a)(Mix) simply because more traffic goes through it. As for the
anonymity provided by the profiles (corresponding to Uniform profiles in Ap-
pendix A), we can see in Fig. 1(a)(Profile) that it remains constant, because we
assume that the connectivity does not increase with the network (though in a
real network it might increase slightly), which becomes more sparse. Interest-
ingly, Fig. 1(a)(Combined) shows that the combined anonymity decreases with
the network size. As we shall see, variations in parameters that have a posi-
tive (mix) or no (profiles) effect on anonymity when sources of information are
considered separately, can have a negative impact when all information is put
together.

In this particular case the decrease in anonymity with network size is due to an
interaction between profiles and mix function. Consider a random user Alice. The
attacker is aware of her sender profile, so only users who share friends with Alice
contribute to her anonymity. Alice and her friends send and receive on average
the same number of messages whether the network is large or small. At the same
time, the Mixmaster function [5] that determines the fraction f of messages sent
per round increases with the traffic load until it reaches its limit2—note that
in Fig. 1(a)(Combined) anonymity stabilizes beyond that point. Therefore, the
larger network induces the mix to flush a higher fraction of messages, which
consequently in the mix for fewer rounds. This effect, in fact, decreases the
amount of mixing, because friends of Alice who sent or received messages in the
rounds before or after her contribute less to her anonymity3.

2 The maximum fraction of messages sent by Mixmaster is f = 0.65. In our setting,
this is reached when there are around 2500 users.

3 Friends who sent messages during the same round as Alice contribute the same
amount as in the case of the smaller network.
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5.2 Adding Extra Information

In this section we briefly show how Bayesian inference can be used to incorpo-
rate additional sources of information. Consider, for instance, a writing pattern
recognition test. Let us assume that the attacker can run a test on the messages
at the output of the mix and compare the writing to available text from the
potential senders. This test outputs a true positive result with probability pt

and a false positive with probability pf , and therefore produces as result a set
of positives Up and a set of negatives Un.

Based on the evidence E′ produced by the test, the adversary can derive for
each user uj the probability Pr(hj |E′) that she was the true author of the text.
Users testing negative (i.e., uj ∈ Un) have probability Pr(hj |E′ = 0) of being
the writer, while those testing positive (i.e., uj ∈ Up) are the originator of the
message with probability Pr(hj |E′ = 1).

The posterior probability distribution P (H |E′) is computed applying
Bayesian inference as explained in Sect. 3.3. The evidence E′ is a vector with
zeros for users who tested negative and ones for those who tested positive. The
prior P (H) corresponds to the (already existing) probability distribution that
combines the profile and traffic analysis information. Assuming that E′ contains
k positives for a population of N users, P (E′|H) is computed as follows:

Pr(E′ = 0|hj) = (1 − pt)

(
N − 1

k

)

pk
f (1 − pf )N−k−1

Pr(E′ = 1|hj) = pt

(
N

k − 1

)

pk−1
f (1 − pf )N−k

We made experiments where we considered two tests that give correct answers
with different degrees of accuracy. The high accuracy test had a true positive
rate pt = 0.8 and a false positive rate pf = 0.01, while in the low accuracy one
these values were pt = 0.5 and pf = 0.1. The results are shown in Figure 1(b),
where we can see how the new information provided by the test reduces (on
average) sender anonymity. Note however the outliers: in some instances, the
additional information provided by text recognition test does not help reducing
anonymity. We further investigate this effect in Sect. 5.6.

5.3 Quantity of Profile Knowledge

In the previous section we compared anonymity in these cases: (i) the adver-
sary knows the profiles of all users, but cannot perform traffic analysis; (ii) the
adversary does not know any profiles, but can observe the mix; and (iii) the
adversary has access to all profiles and communication data. Here, we look at
sender and recipient anonymity towards adversaries who can observe all traffic
through the mix but only know a fraction of the user profiles (generated follow-
ing the Uniform description in Appendix A). We assume that the attacker has
perfect knowledge of some profiles, and knows nothing about the rest. Whenever
the attacker does not know a profile, she will consider it as uniform.
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(a) Anonymity vs network growth (b) Anonymity after combining
three sources of information

Fig. 1. Sender anonymity when various sources of information are available

In Figure 2(a) we show the results for recipient anonymity with respect to the
percentage of known profiles. On the left hand side of the figure (Mix) we show
the anonymity Am provided by the mix, which is independent from the quantity
of profile knowledge and thus invariant for all experiments. The center and right
hand side show, respectively, the anonymity Ap of the profiles and the combined
Ac. Recipients of users with unknown profiles are unaffected by the percentage
of known profiles, and enjoy the maximum anonymity that the mix can offer.
For them, the profile anonymity is Ap = log2(N) and the combined recipient
anonymity is Ac = Am. Conversely, recipients of profiled users do not benefit
from unknown profiles, and their recipient anonymity is the same regardless
of how many other profiles are known. The aggregation of these two sets of
recipient anonymity results can be clearly seen in the box plots of Fig. 2(a).
Note the sudden jump in the median when half the profiles are known, and the
values of the quartiles and outliers.

Unlike in the case of receiver anonymity, the percentage of known profiles af-
fects the sender anonymity of all users, profiled or not, in the same way. This is
because recipient profiles P (ui ← U) are computed using all sender profiles (see
Sect. 3.2), and unpredictability of some users’ sending patterns introduces uncer-
tainty for all messages. The results of our experiments are shown in Fig 2(b)—as
more profiles become available to the attacker, the sender profile and combined
anonymity decrease.

Note that although the behaviour of sender and recipient anonymity is dif-
ferent when the adversary has partial knowledge, the values are the same for
the extremes—i.e., sender and recipient anonymity are symmetric (in their dis-
tribution of values) both when all profiles are known and when all profiles are
unknown, but not when some profiles are and some are not.

Finally, note that in our experiment all users have non-uniform sending profiles
(they only send messages to their friends), so the adversary’s assumption of
uniform behaviour for unknown users introduces errors in her results. We further
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Fig. 2. Receiver (left) and sender (right) anonymity depending on the quantity of
profile knowledge

elaborate on the implications of having (or assuming) wrong information in the
next section.

5.4 Quality of Profile Knowledge

Human behaviour is hard to model and predict, and even the most sophisticated
adversary with access to vast amounts of information can only at best approx-
imate user behavioural profiles. Therefore, we can reasonably assume that in
a real world scenario there is going to be some difference between the profiles
guessed or predicted by the adversary and the actual user sending patterns. Fur-
thermore, due to the lack of available real-world data, little is known about how
user sending profiles might actually look like, or how they evolve in time. For
this reason, it is worth looking at the implications for the anonymity adversary
of making wrong behavioural assumptions, such as assuming uniform sending
profiles. In this section we study how noise in the profiles propagates and find
that small errors in the profiles may lead to big errors in the end results.

There are many ways for the adversary to construct her guessed profiles.
They can be obtained, to mention some examples, by studying the links between
users in online social networks such as Facebook or LiveJournal, by analyzing
user sending patterns when messages are sent over a non-anonymous channel
(assuming that the user does not always use the mix for sending her messages),
or by applying statistical disclosure attacks [8] to previous mix communications
of the user. The profile construction method and the quality of data available
to the adversary determine not only the accuracy of the profile, but also the
nature of the “error” with respect to the real profile. For example, users may be
linked in Facebook to acquaintances to whom they rarely or never send messages;
they may have friends to whom they only communicate through an anonymous
channel (and therefore do not appear in their non-anonymous communications);
and the profiles obtained through disclosure attacks are noisy versions of the
real sending patterns. Such a wide range of possibilities makes it hard to predict
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the type of profile errors we can expect in a real world scenario, and has led us
to consider various kinds of erroneous profiles.

One important thing to note is the independence between error magnitude
and actual anonymity value. Small errors in the final result indicate that the
probability distribution obtained by the adversary is roughly similar to the one
she would obtain had she used the true profiles; while large errors indicate that
the adversary’s view on who are the likely senders or receivers of a message is very
different from the actual distribution computed with the real profiles—regardless
of the entropy of the actual (guessed and true) distributions. Anonymity gives a
measure of the adversary’s uncertainty on who are the likely senders or recipients
messages given that all available information is correct; while errors model the
uncertainty of the adversary concerning the accuracy of her anonymity results,
assuming that some information may not be correct.

In order to measure and compare the magnitude of the errors in the profile and
final result making abstraction of the nature of the error, we use as metric the
Euclidean distance dist(x, y) =

√∑
i (x(i) − y(i))2 between true and guessed

probability distributions. We have chosen Euclidean distance for its simplicity
and well understood meaning, and because it provides clear bounds for the final
error—the maximum distance between two probability distributions occurs when
they are orthogonal; its value is

√
2 and the minimum distance is 0.

Let us illustrate with a toy example our method for quantifying the impact
of errors and the meaning of our results. Consider a simple scenario as the
one depicted in Fig. 3, with a population U = {A, B, C, ..., Z} and a unique
(threshold) mixing round. User A sends with uniform probability Pr(A → uj) =
1/4 to each of her four friends {B, C, D, F}, and with Pr(A → uj) = 0 to the
other users. The attacker, however, has a noisy version of A’s profile, and believes
that she chooses uniformly from the set {B, C, D, Z}. The attacker sees a single
round of a threshold mix where A sends a message which comes out to either
F or Z. Naturally, it was F as Z is not in A’s true set of friends. The attacker,
however believes it is Z, because he thinks that Z rather than F is in A’s set of
friends. Hence he wrong profile has led the attacker that Z is the recipient with
probability one. We note that in this example, the receiver anonymity computed
by the attacker when considering the wrong profile is zero (Aattacker = 0), as is
the one she would obtain if she had precise knowledge of A’s sending behavior
(Atrue = 0). However, the probability distribution obtained by the attacker is
very different from the true result, and consequently her error is large. As the
distance between the true and wrong results is much larger than the distance
between the true and wrong profiles, this example provides the intuition that
small errors in the profile may lead the attacker to completely wrong results.

Given that it is hard to predict the type of error the adversary is most likely
to make, we have tested multiple instances of erroneous profiles. These include:
(i) adding a tail to the profile distribution so that the probability of sending
to non-friends appears greater than zero—yet significantly smaller than the one
assigned to friends; (ii) introducing Gaussian noise; (iii) eliminating or (iv)
swapping friends; and (v) assuming uniform behaviour. Appendix B provides a
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dist(x, y) =
√∑

i (x(i) − y(i))2

Dp = dist(Ptrue(A → U), Pattacker(A → U)) = 0.35

Ptrue(H|E) =

{
1 if hj = F
0 if hj �= F

Pattacker(H|E) =

{
1 if hj = Z
0 if hj �= Z

Dc = dist(Ptrue(H|E), Pattacker(H|E)) =
√

2

Fig. 3. Example of how small errors in the profile can induce large errors in the at-
tacker’s results

detailed overview of the types of errors we have considered and the algorithms
used to generated them.

The results of our experiments are shown in Figures 4(a) and 4(b). In both
figures, the X axis represents the distance between the true user profiles (with
which the messages were generated) and the erroneous profiles considered by the
attacker; i.e., Dp = dist(Ptrue(A → U), Pattacker(A → U)). The Y axis expresses
the distance between the probability distributions the attacker would obtain with
the correct and wrong profiles; i.e., Dc = dist(Ptrue(H |E), Pattacker(H |E)). The
grey dots include results of experiments generated with the five error methods
previously mentioned, and we have highlighted in black the results for two types
of errors: adding a tail to the profile distribution (Fig. 4(a)) and assuming uni-
form profiles (Fig. 4(b)). We can see that the errors induced by adding a tail to
the profile are relatively benign compared to other types in the background, as
they take mostly low values in Y (note that this is the type of error obtained
when learning users’ profiles with a statistical disclosure attack). On the other
hand, whenever the adversary (due to lack of information) assumes users send
uniformly, she obtains a distribution that substantially deviates from the cor-
rect result—to the extent that she cannot have any confidence on whether or
not she is getting a good approximation to the correct anonymity set. This is ag-
gravated when we consider errors coming from swapping or eliminating friends,
which cover most of grey area.

5.5 Depth of Profile Knowledge

In some practical scenarios (e.g., Facebook) the adversary may guess the friend-
ship graph but lack enough data to estimate the strength of links between friends.
We say that the adversary’s guessed profiles lack depth when she cannot estimate
the frequency with which friends are chosen as recipients, in spite of accurately
distinguishing friends from non-friends (to whom users never send messages). In
these circumstances, the best the adversary can do is to consider that recipients
are picked uniformly at random from the set of friends. This is a special case of
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(a) Error: tail (b) Error: uniform

Fig. 4. Euclidean distance between true and guessed probability distributions vs dis-
tance between true and guessed profiles (quality of profile knowledge)

erroneous profiles like those analyzed in the previous section, but we have chosen
to present it separately for two reasons: first, because of its practical relevance
(such profiles would be reasonably easy to construct); and second, although the
profiles are noisy, correctly identifying friends (and non-friends) already provides
very valuable information to the attacker.

To better illustrate the impact of the attacker’s assumption, we consider that
users choose their partners of communication having strong preferences for some
of them (Skewed in Appendix A). In Fig 5 we show how the error in the com-
bined probability increases proportionally to the error in the profile. When the
true profile of a user is close to uniform4, the assumption of the attacker is not
far from the truth—the distance Dp between both profiles is small, and so the
distance Dc between the combined distributions. As Dp increases, so does Dc,
but as a rule of thumb we could say that the error Dc is most likely to be smaller
than the original error Dp. The contrast with the previous section’s results (con-
sidering profiles uniform in the whole population) indicates that an adversary
who correctly identifies friendship links obtains two advantages: she eliminates
non-friends from the anonymity sets, effectively decreasing anonymity; and she
has higher confidence in her result, because the true and guessed distributions
are comparatively closer to each other.

5.6 How Often Does Additional Information Reduce Uncertainty?

It was pointed out in [13] that in some cases additional information may result in
higher anonymity, even if on average anonymity decreases as more information

4 Because of the algorithm used to generate the profiles (see App. A), recipient profiles
are on average more uniform than sender profiles, this explains why the values in
Fig 5(b) are smaller than in Fig 5(a).
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Fig. 5. Receiver (left) and sender (right) anonymity error depending on depth of knowl-
edge

becomes available. In this section we present some results showing under which
conditions we can expect these cases to appear. In all experiments we used
Mixmaster (i.e., the anonymity Am provided by the mix is invariant), and a
small world network with 1000 users that send to friends with probability Prf

and to non-friends with Prnf , such that 0 ≤ Prnf ≤ Prf . The details of the
generation of profiles is available in Appendix A, under the name Step. We
study the results according to two variables: the number F of friends per user,
and a parameter 0 ≤ D ≤ ∞ that tunes the difference between Prf and Prnf ,
such that D = 0 implies Prnf = 0, and D = ∞ implies Prnf = Prf .

To better understand how sending behaviour affects anonymity, we have stud-
ied separately the frequency of cases where the combined anonymity Ac is higher
than the anonymity of the mix alone Am or the profile Ap, and its variation with
the parameters F and D. The results in Figs. 6(a) and 6(b) show, respectively,
the percentages of messages for which Ac > Am and Ac > Ap, which we denote
fc>m and fc>p.

To interpret the results, note that increasing F and/or D leaves Am constant;
increases Ap (because it makes the profile more uniform); and Ac increases as well
as a result of more uniform profiles. When D = 0 users only send to friends—i.e.,
the recipient anonymity set is reduced drastically—and Ac is always lower than
Am and Ap. For 0 < D < 1 and small F , Ap has increased only slightly, while
Ac benefits mostly from messages sent to non-friends—these are “rare5 events”
in which the hints coming from the mix and the profile are “contradictory.”
Given the profile always points to the highest probability friends, when the
mix points to (less probable) non-friends as most likely recipients, the mix and
profile distributions compensate instead of reinforcing each other, making the
combined distribution more uniform than one or both originals—i.e., Ac > Ap

and/or Ac > Am. This also explains the high fc>m for larger values of D. Once
F and/or D grow to make Ap > Am, it becomes harder for Ac to catch up with

5 Note that for D = 1 half the messages are sent to non-friends, even if the probability
of picking a concrete non-friend is small.
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Fig. 6. Percentage of cases where the combined anonymity is higher than the anonymity
of the mix only fc>m (a) and profile only fc>p(b)

it (we can see in the Fig. 6(b) that fc>p = 0 for F > 15 and/or D > 1.25). When
Ap hits its maximum with perfectly uniform profiles at D = ∞, the profiles stop
bringing any additional information and Ac = Am. Thus, fc>m = 0 at D = ∞
in Fig. 6(a).

6 Conclusions and Future Work

In this paper we examined the anonymity of users in the practical context of
a social network. We showed the overall anonymity is low and likely does not
increase with the size of the social network—if anything, it decreases as the
network becomes more sparse.

The positive result of this paper is that it is necessary to trust the social
network entirely to provide high quality information about the sender profiles
of the users, otherwise big mistakes can be made in the sender and receiver
anonymity of messages. Indeed, unless the profile is perfect, the results may be
meaningless as we demonstrated occurrences of huge errors in the anonymity
probability distribution even when the profile error is small. We have found
however that certain types of errors induce more bounded deviations than others
in the overall anonymity.

Many issues remain to be addressed, particularly in the practical setting.
Particularly interesting to us is the problem of assessing the anonymity of a
real social network such as Facebook and its approximation as mapped by the
attacker. Although we believe that we modeled the “friendship” between users
to a fair degree of accuracy by using a Watts-Strogatz graph, the extent of
the linkage and the resulting sender profiles remain a more difficult issue. Only
empirical modeling can gauge how much the real social dynamics differ from the
theoretical models employed here.

One extremely promising line of research is to set up and evaluate an attack
where the adversary continuously updates the social network graph with new
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information gained from observing the communication patterns and simultan-
iously tries to deanonymize the messages. Interestingly, the result of our paper
holds in this setting too – whatever the methodology of deriving the social net-
work graph, small errors in the graph may cause large errors in the anonymity of
the message. Although complex statistical disclosure attacks may prove efficient
at minimizing the errors in the graph, they can never eliminate such inaccura-
cies which may arise as a result of external factors, for instance changes of user
behaviour over time.
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A User Profiles

In order to create a diverse testbed for our experiments, we defined four different
kinds of user profiles. We create a profile P (u → U) for each user u in the set U of
N users connected through a friendship graph, and we say that uj is a “friend” of
u if they share and edge in the graph and a non-friend otherwise. In the following,
We denote the set of friends of u as fu := {uj ∈ U |Pr(u → uj) �= 0} (cardinality
F ), and the set of non-friends as nfu := {uj ∈ U |Pr(u → uj) = 0} (cardinality
N −F ). The three first types of profiles (Uniform, Random and Skewed) restrict
users to sending only to their friends, while the fourth type (Step) allows users
to send to non-friends with a smaller probability than to friends.

PU : Uniform. users who send messages according to a PU profile pick their
recipient uniformly at random from their set of friends. P (u → U) is defined as:

P (u → uj) =
{

1
F if uj ∈ fu

0 if uj /∈ fu

PR: Random. in this setting users send non-uniformly to their friends, but they
have no particularly strong preferences for any of them. Hence, this profile can be
considered a noisy version of PU . PR is created by generating a random number
between 0 and 1 for each friend, and normalizing the resulting distribution.

PK : Skewed. users whose profile is PK usually have strong preferences for
a small subset of their friends who are chosen as recipients very frequently,
while the others only appear sporadically. The algorithm to generate PK starts
defining μ = 1 as the initial probability “budget” available. Then we recursively

http://www.abditum.com/mixmaster-spec.txt


On the Impact of Social Network Profiling on Anonymity 61

(a) Fixed D and variable F (b) Fixed F and variable D

Fig. 7. Variation of PT (Step) profiles with F and D

assign to each friend a probability p chosen at uniformly at random from the
interval [0, μ], and update the value μ = μ − p describing the remaining budget.
We repeat the procedure until only one friend is left, to whom we assign the
remaining probability μ.

PT : Step. users with these profiles send messages to the whole population.
Nevertheless, they choose their friends as recipients more frequently than non-
friends. For user u, the probability assigned in her profile to each of her friends
uf is Prf = 1/F+D/N

1+D , while the probability assigned to each non-friend unf is

Prnf = D/N
1+D . F is the cardinality of the set of friends, and the influence of its

variation in the profile can be seen in Fig. 7(a). The parameter D influences
the relation, in terms of probability, between friends and non-friends. As D
increases, the sending profile becomes more uniform in all N potential recipients,
diminishing the difference between friends and non-friends, as shown in Fig. 7(b).
For D = 0, users never send to non-friends, and profiles are uniform on the whole
population for D = ∞.

B Erroneous Profiles

We simulate the adversary’s imprecise information as follows. For each user
u ∈ U we take her true profile P (u → U), generated as explained in Appendix A,
and we create a set of “erroneous profiles”, Pattacker,i(u → U), by applying one
of the following transformations:

Tail : we consider that if the adversary does not have accurate knowledge of u’s
profile, she will rather not exclude any user as potential contact of u (note
that a similar profile shape is obtained after applying statistical disclosure
attacks, with friends getting higher probabilities and non friends getting
lower—but not zero—probabilities). We model this by distributing 20% of
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the total probability to the set nfu, and we subtract this probability uni-
formly from the set of friends fu, so that the new profile probabilities add
up to one. We use this profile as basis when introducing the following errors.

Gaussian: we create two sets of profiles with this method, where we first add
Gaussian noise to each element in the profile and then normalize. The noise
samples come from two normal distributions N(μi, σ

2
i ) with μ1 = 0.01, μ2 =

0.05, and σ1 = σ2 = 0.3.
Eliminate: this error emulates situations where the attacker misses one or more

friends of u in her approximation of the profile, and considers them as non-
friends. As explained before, becoming a non-friend does not discard a user
as potential receiver of u, but it reduces her probability in u’s profile. In
our experiments we eliminate an increasing number of friends until only one
remains. Each time a friend is eliminated the probabilities of the remaining
friends are increased to compensate.

Swap: this error models the case where the attacker not only misses some
friends, but wrongly considers non-friends as likely recipients. This effect is
modeled by swapping (between one and all) the elements of fu with elements
of nfu, i.e. when a friend is erased from the set of contacts, a non friend takes
his place..

Uniform: this error simulates the case where the attacker has no knowledge
about the social network, and thus considers all profiles as uniform over all
population.
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Abstract. To date, there has yet to be a study that characterizes the
usage of a real deployed anonymity service. We present observations and
analysis obtained by participating in the Tor network. Our primary goals
are to better understand Tor as it is deployed and through this under-
standing, propose improvements. In particular, we are interested in an-
swering the following questions: (1) How is Tor being used? (2) How is
Tor being mis-used? (3) Who is using Tor?

To sample the results, we show that web traffic makes up the ma-
jority of the connections and bandwidth, but non-interactive protocols
consume a disproportionately large amount of bandwidth when com-
pared to interactive protocols. We provide a survey of how Tor is being
misused, both by clients and by Tor router operators. In particular, we
develop a method for detecting exit router logging (in certain cases).
Finally, we present evidence that Tor is used throughout the world, but
router participation is limited to only a few countries.

1 Introduction

Tor is a popular privacy enhancing system that is designed to protect the pri-
vacy of Internet users from traffic analysis attacks launched by a non-global
adversary [1]. Because Tor provides an anonymity service on top of TCP while
maintaining relatively low latency and high throughput, it is ideal for interac-
tive applications such as web browsing, file sharing, and instant messaging. Since
its initial development, researchers have analyzed the system’s performance [2]
and security properties [3,4,5,6,7]. However, there has yet to be a study aimed
at understanding how a popular deployed privacy enhancing system is used in
practice. In this work, we utilize observations made by running a Tor router to
answer the following questions:

How is Tor being used?. We analyze application layer header data relayed
through our router to determine the protocol distribution in the anonymous
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network. Our results show the types of applications currently used over Tor, a
substantial amount of which is non-interactive traffic. We discover that web traf-
fic makes up the vast majority of the connections through Tor, but BitTorrent
traffic consumes a disproportionately large amount of the network’s bandwidth.
Perhaps surprisingly, protocols that transmit passwords in plain-text are fairly
common, and we propose simple techniques that attempt to protect users from
unknowingly disclosing such sensitive information over Tor.

How is Tor being mis-used?. To explore how Tor is currently being misused,
we examine both malicious router and client behaviors. Since insecure protocols
are common in Tor, there is a potential for a malicious router to gather passwords
by logging exit traffic. To understand this threat, we develop a method to detect
when exit routers are logging traffic, under certain conditions. Using this method,
we did, in fact, catch an exit router capturing POP3 traffic (a popular plain-text
e-mail protocol) for the purpose of compromising accounts.

Running a router with the default exit policy provides insight into the variety
of malicious activities that are tunneled trough Tor. For instance, hacking at-
tempts, allegations of copyright infringement, and bot network control channels
are fairly common forms of malicious traffic that can be observed through Tor.

Who is using Tor?. In order to understand who uses Tor, we present the
geopolitical distribution of the clients that were observed. Germany, China, and
the United States appear to use Tor the most, but clients from 126 different
countries were observed, which demonstrates Tor’s global appeal. In addition,
we provide a geopolitical breakdown of who participates in Tor as a router.
Most Tor routers are from Germany and the United States, but Germany alone
contributes nearly half of the network’s total bandwidth. This indicates that
implementing location diversity in Tor’s routing mechanism is not possible with
the current distribution of router resources.

Outline. The remainder of this paper is organized as follows: In Section 2,
we provide a brief overview of Tor and Section 3 describes our data collec-
tion methodology. In Section 4, we explore how Tor is used, and present the
observed exit traffic protocol distribution. In Section 5, we discuss how Tor is
commonly abused by routers, and describe a new technique for detecting routers
that maliciously log exit traffic. Section 6 describes our first-hand experiences
with misbehaving clients. Section 7 gives the geopolitical distributions of clients
and routers. Finally, concluding remarks are given in Section 8.

2 Tor Network

Tor’s system architecture attempts to provide a high degree of anonymity and
strict performance standards simultaneously [1]. At present, Tor provides an
anonymity layer for TCP by carefully constructing a three-hop path (by de-
fault), or circuit, through the network of Tor routers using a layered encryption
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strategy similar to onion routing [8]. Routing information is distributed by a
set of authoritative directory servers. In general, all of a particular client’s TCP
connections are tunneled through a single circuit, which rotates over time. There
are typically three hops in a circuit; the first node in the circuit is known as the
entrance Tor router, the middle node is called the middle Tor router, and the
final hop in the circuit is referred to as the exit Tor router. It is important to note
that only the entrance router can directly observe the originator of a particular
request through the Tor network. Also, only the exit node can directly examine
the decrypted payload and learn the final destination server. It is infeasible for
a single Tor router to infer the identities of both the initiating client and the
destination server. To achieve its low-latency objective, Tor does not explicitly
re-order or delay packets within the network.

3 Data Collection Methodology

To better understand real world Tor usage, we set up a Tor router on a 1Gb/s
network link.1 This router joined the currently deployed network during De-
cember 2007 and January 2008. This configuration allowed us to record a large
amount of Tor traffic in short periods of time. While running, our node was
consistently among the top 5% of routers in terms of bandwidth of the roughly
1,500 routers flagged as Running by the directory servers at any single point in
time.

We understand that there are serious privacy concerns that must be addressed
when collecting statistics from an anonymous network [9]. Tor is designed to
resist traffic analysis from any single Tor router [1]; thus, the information we
log — which includes at most 20 bytes of application-level data — cannot be
used to link a sender with a receiver, in most cases. We considered the privacy
implications carefully when choosing what information to log and what was too
sensitive to store. In the end, we chose to log information from two sources: First,
we altered the Tor router to log information about circuits that were established
though our node and cells routed through our node. Second, we logged only
enough data to capture up to the application-level protocol headers from the
exit traffic that was relayed through our node.

In order to maximize the number of entry and exit connections that our router
observed, it was necessary to run the router twice, with two distinct exit poli-
cies:2 (1) Running with an open exit policy (the default exit policy3) enabled our

1 Our router used Tor software version 0.1.2.18.
2 Due to the relatively limited exit bandwidth that exists within Tor, when we ran

the default exit policy, our node was chosen as the exit router most frequently on
established circuits. As a result, in order to observe a large number of clients, it
became necessary to collect data a second time with a completely restricted exit
policy so that we would not be an exit router.

3 The default exit policy blocks ports commonly associated with SMTP, peer-to-peer
file sharing protocols, and ports with a high security risk.
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router to observe numerous exit connections, and (2) Prohibiting all exit traffic
allowed the router to observe a large number of clients.

Entrance/Middle Traffic Logging. To collect data regarding Tor clients,
we ran our router with a completely restricted exit policy (all exit traffic was
blocked). We ran our Tor router in this configuration for 15 days from January
15–30, 2008. The router was compiled with minor modifications to support addi-
tional logging. Specifically, for every cell routed through our node, the time that
it was received, the previous hop’s IP address and TCP port number, the next
hop’s IP address and TCP port number, and the circuit identifier associated
with the cell is logged.

Exit Traffic Logging. To collect data regarding traffic exiting the Tor network,
we ran the Tor router for four days from December 15–19, 2007 with the default
exit policy. For routers that allow exit traffic, the default policy is the most
common. During this time, our router relayed approximately 709GB of TCP
traffic exiting the Tor network.

In order to gather statistics about traffic leaving the network, we ran tcpdump
on the same physical machine as our Tor router. Tcpdump was configured to
capture only the first 150 bytes of a packet using the “snap length” option (-s).
This limit was selected so that we could capture up to the application-level
headers for protocol identification purposes. At most, we captured 96 bytes of
application header data, since an Ethernet frame is 14 bytes long, an IP header
is 20 bytes long, and a TCP header with no options is 20 bytes long. We used
ethereal [10], another tool for protocol analysis and stateful packet inspection,
in order to identify application-layer protocols. As a post-processing step, we
filtered out packets with a source or destination IP address of any active router
published during our collection period. This left only exit traffic.

4 Protocol Distribution

As part of this study, we observe and analyze the application-level protocols that
exit our Tor node. We show in Table 1 that interactive protocols like HTTP make
up the majority of the traffic, but non-interactive traffic consumes a dispropor-
tionate amount of the network’s bandwidth. Finally, the data indicates that
insecure protocols, such as those that transmit login credentials in plain-text,
are used over Tor.

4.1 Interactive vs. Non-interactive Web Traffic

While HTTP traffic comprises an overwhelming majority of the connections
observed, it is unclear whether this traffic is interactive web browsing or non-
interactive downloading. In order to determine how much of the web traffic is
non-interactive, we counted the number of HTTP connections that transferred
over 1MB of data. Only 3.5% of the connections observed were bulk transfers.
The vast majority of web traffic is interactive.
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Table 1. Exit traffic protocol distribution by number of TCP connections, size, and
number of unique destination hosts

Protocol Connections Bytes Destinations
HTTP 12,160,437 (92.45%) 411 GB (57.97%) 173,701 (46.01%)

SSL 534,666 (4.06%) 11GB (1.55%) 7,247 (1.91%)
BitTorrent 438,395 (3.33%) 285 GB (40.20%) 194,675 (51.58%)

Instant Messaging 10,506 (0.08%) 735 MB (0.10%) 880 (0.23%)
E-Mail 7,611 (0.06%) 291 MB (0.04%) 389 (0.10%)

FTP 1,338 (0.01%) 792 MB (0.11%) 395 (0.10%)
Telnet 1,045 (0.01%) 110 MB (0.02%) 162 (0.04%)

Total 13,154,115 709 GB 377,449

4.2 Is Non-interactive Traffic Hurting Performance?

The designers of the Tor network have placed a great deal of emphasis on achiev-
ing low latency and reasonable throughput in order to allow interactive appli-
cations, such as web browsing, to take place within the network [1]. However,
the most significant difference between viewing the protocol breakdown mea-
sured by the number of bytes in contrast to the number of TCP connections is
that while HTTP accounted for an overwhelming majority of TCP connections,
the BitTorrent protocol uses a disproportionately high amount of bandwidth.4

This is not shocking, since BitTorrent is a peer-to-peer (P2P) protocol used to
download large files.

Since the number of TCP connections shows that the majority of connections
are HTTP requests, one might be led to believe that most clients are using the
network as an anonymous HTTP proxy. However, the few clients that do use the
network for P2P applications such as BitTorrent consume a significant amount
of bandwidth. The designers of the network consider P2P traffic harmful, not
for ethical or legal reasons, but simply because it makes the network less useful
to those for whom it was designed. In an attempt to prevent the use of P2P
programs within the network, the default exit policy blocks the standard file
sharing TCP ports. But clearly, our observations show that port-based blocking
strategies are easy to evade, as these protocols can be run on non-standard ports.

4.3 Insecure Protocols

Another surprising observation from the protocol statistics is that insecure pro-
tocols, or those that transmit login credentials in plain-text, are fairly common.
While comprising a relatively low percentage of the total exit traffic observed,
protocols such as POP, IMAP, Telnet, and FTP are particularly dangerous due

4 Recall that our router’s default exit policy does not favor any particular type of
traffic. So the likelihood of observing any particular protocol is proportional to the
usage of that protocol within the network and the number of other nodes supporting
the default or a similar exit policy.
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to the ease at which an eavesdropping exit router can capture identifying in-
formation (i.e., user names and passwords). For example, during our observa-
tions, we saw 389 unique e-mail servers, which indicates that there were at least
389 clients using insecure e-mail protocols. In fact, only 7,247 total destination
servers providing SSL/TLS were observed.

The ability to observe a significant number of user names and passwords is
potentially devastating, but it gets worse: Tor multiplexes several TCP connec-
tions over the same circuit. Having observed identifying information, a malicious
exit router can trace all traffic on the same circuit back to the client whose iden-
tifying information had been observed on that circuit. For instance, suppose that
a client initiates both an SSL connection and an AIM connection at the same
time. Since both connections use the same circuit (and consequently exit at the
same router), the SSL connection can be easily associated with the client’s iden-
tity leaked by the AIM protocol. Thus, tunneling insecure protocols over Tor
presents a significant risk to the initiating client’s anonymity.

To address this threat, a reasonable countermeasure is for Tor to explicitly
block protocols such as POP, IMAP, Telnet, and FTP5 using a simple port-
based blocking strategy at the client’s local socks proxy.6 In response to these
observations, Tor now supports two configuration options to (1) warn the user
about the dangers of using Telnet, POP2/3, and IMAP over Tor, and (2) block
these insecure protocols using a port-based strategy [11].

However, this same type of information leakage is certainly possible over
HTTP, for instance, so additional effort must also be focused on enhancing
Tor’s HTTP proxy to mitigate the amount of sensitive information that can
be exchanged over insecure HTTP. For instance, a rule-based system could be
designed to filter common websites with insecure logins.

Finally, protocols that commonly leak identifying information should not be
multiplexed over the same circuit with other non-identifying traffic. For exam-
ple, HTTP and instant messaging protocols should use separate and dedicated
circuits so that any identifying information disclosed through these protocols is
not linked with other circuits transporting more secure protocols.

5 Malicious Router Behavior

Given the relatively large amount of insecure traffic that can be observed through
Tor, there is great incentive for malicious parties to attempt to log sensitive
information as it exits the network. In fact, others have used Tor to collect a
large number of user names and passwords, some of which provided access to
the computer systems of embassies and large corporations [12].

5 Anonymous FTP may account for a significant portion of FTP exit traffic and does
not reveal any information about the initiating client. Therefore, blocking FTP may
be unnecessary.

6 Port-based blocking is easy to evade, but it would protect naive users from mistakenly
disclosing their sensitive information.
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In addition to capturing sensitive exit traffic, a Tor router can modify the
decrypted contents of a message entering or leaving the network. Indeed, in the
past, routers have been caught modifying traffic (i.e., injecting advertisements
or performing man-in-the-middle attacks) in transit, and techniques have been
developed to detect this behavior [13].

We present a simple method for detecting exit router logging under certain
conditions. We suspect — and confirm this suspicion using our logging detection
technique — that insecure protocols are targeted for the specific purpose of
capturing user names and passwords.

5.1 Detection Methodology

At a high level, the malicious exit router logging detection technique relies upon
the assumption that the exit router is running a packet sniffer on its local net-
work. Since packet sniffers such as tcpdump are often configured to perform
reverse DNS queries on the IP addresses that they observe, if one controls the
authoritative DNS server for a specific set of IP addresses, it is possible to trace
reverse DNS queries back to the exit node that issued the query.

Tor Client

Malicious Exit Router

Tor Network

Lookup 1.1.1.1

Circuit

SYN 1.1.1.1

Authoritative DNS Server

Fig. 1. Malicious exit router logging detection technique

More specifically, the detection method works as follows:

1. We run an authoritative domain name server (DNS) that maps domain
names to a vacant block of IP addresses that we control.

2. Using a Tor client, a circuit is established using each individual exit router.
3. Having established a circuit, a SYN ping is sent to one of the IP addresses

for which we provide domain name resolution.

This procedure (shown in Figure 1) is repeated for each exit router. Since the
IP address does not actually exist, then it is very unlikely that there will be
any transient reverse DNS queries. However, if one of the exit routers we used is
logging this traffic, they may perform a reverse DNS look-up of the IP address
that was contacted. In particular, we made an effort to direct the SYN ping at
ports where insecure protocols typically run (ports 21, 23, 110, and 143).
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5.2 Results

Using the procedure described above, over the course of only one day, we found
one exit router that issued a reverse DNS query immediately after transporting
our client’s traffic. Upon further inspection, by SYN ping scanning all low ports
(1-1024), we found that only port 110 triggered the reverse DNS query. Thus,
this router only logged traffic on this port, which is the default port for POP3, a
plain-text e-mail protocol. We suspect that this port was targeted for the specific
purpose of capturing user names and passwords.

Further improvements on this logging detection could be made by using a
honeypot approach and sending unique user name and password pairs through
each exit router. The honeypot could detect any login attempts that may occur.
This method would find the most malicious variety of exit router logging. In
fact, upon detecting the logging exit router (using the method described above),
we also used this honeypot technique and observed failed login attempts from
the malicious IP address shortly after observing the logging.

These results reinforce the need to mitigate the use of protocols that provide
login credentials in plain-text over Tor. Given the ease at which insecure proto-
cols can be captured and the relative ease at which they could be blocked, it is
a reasonable solution to block their default ports.

5.3 Discussion

This approach to detecting exit router logging has limitations. First, it can only
trace the reverse DNS query back to the exit router’s DNS server, not to the
router itself. To complicate matters more, there exist free domain name resolu-
tion services (such as OpenDNS [14]) that provide somewhat anonymous name
resolution for any host on the Internet. If one assumes that the exit router is log-
ging and performing reverse DNS queries in real-time, then it is easy to correlate
reverse DNS queries with exit routers using timing information.

If reverse DNS is not performed in real-time, then more sophisticated tech-
niques for finding the malicious exit router are required. For instance, if one
controls the domain name resolution for several IP addresses, then it is possible
to embed a unique pattern in the order of the SYN pings to different IPs through
each exit router. This order will be preserved in the exit router’s queries and
can be used to determine the exit router that logged the traffic. Here we can
leverage many of the same principles as explored in [15,16].

The detection method presented makes the key assumption that the logging
process will trigger reverse-DNS queries. However, this is not always the case. For
example, exit routers that transport traffic at high bandwidth cannot feasibly
perform reverse DNS queries in real-time. Also, this technique can be evaded
simply by not performing reverse DNS when logging.

6 Misbehaving Clients

While Tor provides an invaluable service to protecting online privacy, over the
course of operating a Tor router with the default exit policy, we learned about
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a wide variety of malicious client behavior. Since we are forwarding traffic on
behalf of Tor users, our router’s IP address appears to be the source of sometimes
malicious traffic. The large amount of exit bandwidth that we provided caused
us to receive a large number of complaints ranging from DMCA §512 notices
related to allegations of copyright infringement, reported hacking attempts, IRC
bot network controls, and web page defacement. However, an enormous amount
of malicious client activity was likely unreported.

As a consequence of this malicious client behavior, it becomes more difficult
to operate exit routers. For instance, our institution’s administration requested
that we stop running our node shortly after the data for this paper was collected.
Similar accounts of administrative and law enforcement attempts to prevent Tor
use are becoming more common as Tor becomes more popular to the masses [17].
The Electronic Frontier Foundation (EFF), a group that works to protect online
rights, has provided template letters [18] and offered to provide assistance [19]
to Tor router operators that have received DMCA take-down notices.

One solution to our problems could have been to change our router’s exit
policy to reject all exit traffic, or specific ports (such as port 80) that gener-
ate a large portion of the complaints. However, this is not practical, since Tor
requires a certain amount of exit bandwidth to function correctly. Another so-
lution is to provide a mechanism for anonymous IP address blocking, such as
Nymble [20]. Our first-hand observations with misbehaving clients reinforces the
need to further study anonymous IP address blocking mechanisms.

7 Geopolitical Client and Router Distributions

As part of this study, we investigate where Tor clients and routers are located geo-
politically. Recall that a client’s IP address is visible to a router when that router
is used as the entrance node on the client’s circuit through the Tor network. In
the current Tor implementation, only particular routers, called entry guards,
may be used for the first hop of a client’s circuit. A router is labeled as an
entry guard by the authoritative directory servers. All Tor router IP addresses
are maintained by the directory servers, and we keep track of the router IP
addresses by simply polling the directory servers periodically.

In order to map an IP address to its corresponding country of origin, we
query the authoritative bodies responsible for assigning IP blocks to individual
countries [21,22,23,24,25]. In order to determine the geopolitical distribution of
Tor usage throughout the world, we aggregate IP addresses by country, and
present the client and router location distributions observed during the January
2008 data collection period.

7.1 Observations

In this section, we present our observations regarding the client and router lo-
cation distributions.
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Table 2. Geopolitical client distributions, router distributions, and the ratio of Tor
users relative to Internet users

Client Distribution Router Distribution
Country Total Country Total

Germany 2,304 Germany 374
China 988 United States 326
United States 864 France 69
Italy 254 China 40
Turkey 221 Italy 36
United Kingdom 170 Netherlands 35
Japan 155 Sweden 35
France 150 Finland 25
Russia 146 Austria 24
Brazil 134 United Kingdom 24

Relative Tor Usage
Country Ratio

Germany 7.73
Turkey 2.47
Italy 1.37
Russia 0.89
China 0.84
France 0.77
United Kingdom 0.75
United States 0.62
Brazil 0.56
Japan 0.32

Client Distribution. During a one day period when our Tor router was marked
as an entry guard by the authoritative directory servers, it observed 7,571 unique
clients7 As depicted in Table 2, the vast majority of clients originated in Ger-
many, with China and the United States providing the next largest number of
clients. Perhaps the most interesting observation about the client distribution
is that Tor has a global user base. While most of the clients are from three
countries, during the course of the entire 15 day observation period, clients were
observed from 126 countries around the world, many of which have well-known
policies of Internet censorship.

To put these raw geopolitical client distributions into perspective, Table 2 in-
cludes a ratio of the percentage of Tor users to the percentage of Internet users
by country, using data on the distribution of broadband Internet users by coun-
try [26]. These percentages were computed by dividing the total number of Tor
clients located in each country by the total number of Tor clients we observed,
which provides the percentage of Tor users located in each country. For example,
the relative Tor usage for Germany is computed as follows: The percentage of the
total Internet users who are from Germany is 3.9% and according to our client
observations, Germany makes up 2,304 of the 7,571 total Tor clients, which is
30.4%. Thus, the ratio of Tor users to Internet users in Germany is 7.73.

These ratios show that Tor is disproportionately popular in Germany, Turkey,
and Italy with respect the the number of broadband Internet users located in
these countries. It is unclear why there is such a large scale adoption of Tor in
these specific countries, relative to Tor usage in other countries. An investigation
of the possible technological, sociological, and political factors in these countries
that are causing this might be an enlightening area of research.

Examining the number of clients that utilized our router as their entry router
when it was not marked as an entry guard provides insight into the approximate

7 We assume that each unique IP address is a unique client. However, dynamic IP
addresses or network address translators (NATs) may be used in some places.



Shining Light in Dark Places: Understanding the Tor Network 73

number of clients that are using a significantly old version of the Tor client
software. Specifically, this indicates that these clients are using a version before
entry guards were introduced in Tor version 0.1.1.20 (May 2006). Over four days,
only 206 clients were observed to be using Tor software that is older than this
version.

Incidentally, entry guards were added to prevent routers from profiling clients,
and indeed the reliance on entry guards prevented us from profiling a large num-
ber of clients beyond what we describe above. Before entry guards were widely
adopted, a strong diurnal usage pattern had been observed [27]. Since entry
guards are now widely adopted, utilizing multiple entry guard perspectives gives
a larger snapshot of the clients’ locations and usage patterns. We informally com-
pared our geopolitical client distribution to that which was observed from other
high bandwidth entry guard routers. The distribution was consistent across each
entry guard. However, we attempted to observe the current client usage patterns,
but this required a more global perspective than we were able to obtain.

Tor Router Distribution. During our data collection, we monitored the au-
thoritative directory servers to determine the total number and geopolitical dis-
tribution of Tor routers. Over the course of 7 days, we took hourly snapshots of
the authoritative directory servers, noting each router’s IP address and band-
width advertisements. During this time, on average 1,188 Tor routers were ob-
served in each snapshot. As shown in Table 2, Germany and the United States
together contribute nearly 59% of the running routers. However, in terms of total
bandwidth, as depicted in Figure 2, Germany provides 45% of the bandwidth
and the United States only provides 23% of the bandwidth.

Fig. 2. Distribution of Tor router band-
width around the world

It has been suggested that location
diversity is a desirable characteristic
of a privacy enhancing system [28].
However, given the current bandwidth
distribution, location diversity while
maintaining adequate load balancing
of traffic is difficult to guarantee. It
is currently possible to build circuits
with at least one router from Germany
and the remaining routers from other
countries. However, if a location-aware
routing mechanism mandated that a
user’s traffic should exit in a specific
country, such as the Netherlands, then
it is necessary to ensure that there is
sufficient exit bandwidth in that country. Incentive programs to encourage vol-
unteers to run routers in under-represented countries should be investigated.
In addition, mitigating malicious client behavior (as noted in Section 6) can
consequently attract more Tor routers.
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Fig. 3. PDFs of Tor’s traffic distribution over its routers during a one hour snapshot

7.2 Modeling Router Utilization

Understanding the distribution with which different routers are utilized on cir-
cuits can provide valuable insights regarding the system’s vulnerability to traffic
analysis. In addition, a probability distribution can be used to build more real-
istic analytical models and simulations.

By counting the number of times that each router appears on a circuit with our
router, we provide probability density functions (PDFs) to model the probability
of each router forwarding a particular packet (shown in Figure 3). In a one hour
snapshot during the January data collection period, the top 2% of all routers
transported about 50% of traffic from the perspective of our router. Within this
top 2%, 14 routers are hosted in Germany, 6 are hosted in the United States, 4
are in France, and Switzerland, the Netherlands, and Finland each host a single
router. These numbers are consistent with the bandwidth distributions given in
Figure 2, and further highlight the difficulty of providing strict location diversity
in Tor’s routing mechanism. The PDF curve drops sharply; the bottom 75% of
the routers together transported about 2% of the total traffic. The most traffic
that any single router transported was 4.1% of the total traffic. This indicates
that the vast majority of Tor traffic is handled by a very small set of routers.
Consequently, if an adversary is able to control a set of the highest performing
routers, then its ability to conduct traffic analysis increases dramatically. Finally,
the PDFs calculated from our router’s observations are very similar to the router
distribution based on routers’ bandwidth advertisements, as reported by Tor’s
directory servers.

8 Conclusion

This study is aimed at understanding Tor usage. In particular, we provided
observations that help understand how Tor is being used, how Tor is being
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mis-used, and who participates in the network as clients and routers. Through
our observations, we have made several suggestions to improve Tor’s current
design and implementation. First, in response to the fairly large amount of in-
secure protocol traffic, we proposed that Tor provide a mechanism to block the
ports associated with protocols such as POP3, IMAP, and Telnet. Given the
ease at which an eavesdropping exit router can log sensitive user information
(such as user names and passwords), we developed a method for detecting ma-
licious logging exit routers, and provided evidence that there are such routers
that specifically log insecure protocol exit traffic. As a final avenue of study, we
show the disparity in geopolitical diversity between Tor clients and routers, and
argue that location diversity is currently impossible to guarantee unless steps
are taken to attract a more diverse set of routers.

Due to its popularity, Tor provides insight into the challenges of deploying a
real anonymity service, and our hope is that this work will encourage additional
research aimed at (1) providing tools to enforce accountability while preserving
strong anonymity properties, (2) protecting users from unknowingly disclosing
sensitive/identifying information, and (3) fostering participation from a highly
diverse set of routers.
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Abstract. Below we present an information-theoretic method for prov-
ing the amount of information leaked by programs formalized using the
HOL4 theorem-prover. The advantages of this approach are that the
analysis is quantitative, and therefore capable of expressing partial leak-
age, and that proofs are performed using the HOL4 theorem-prover, and
are therefore guaranteed to be logically and mathematically consistent
with the formalization. The applicability of this methodology to proving
privacy properties of Privacy Enhancing Technologies is demonstrated
by proving the anonymity of the Dining Cryptographers protocol. To the
best of the author’s knowledge, this is the first machine-verified proof of
privacy of the Dining Cryptographers protocol for an unbounded number
of participants and a quantitative metric for privacy.

1 Introduction

Gene Spafford once said, “The only truly secure system is one that is powered
off, cast in a block of concrete and sealed in a lead-lined room with armed guards
– and even then I have my doubts.” [11] While some, if not most, of the security
community will agree with this sentiment, it does not negate the desire to de-
velop technologies that increase the security of systems and methods to analyze
and quantify the relative security of these technologies. As Privacy-Enhancing
Technologies (PETs) are developed, the need arises for methods to analyze and
quantify the relative privacy guarantees of various PETs. It is important that
these methods of analysis are quantitative (rather than a boolean result of “se-
cure” or “insecure”) because many deployable PETs must make concessions for
the sake of efficiency and do not guarantee absolute privacy. Pioneering work
done independently by both Serjantov and Danezis [26] and Dı́az [12] proposed
the use of entropy as a metric for privacy, thereby linking Shannon’s Informa-
tion Theory [27] to quantitative analysis of privacy and giving rise to a subse-
quent branch of privacy analysis. Since then most quantitative privacy analysis
is rooted in Information Theory. More recent work in this area e.g. Chatzikoko-
lakis’ use of Bayes Risk [3], has offered a variety of related metrics for privacy
based on Information Theory.

Historically, various products of formal methods research, such as theorem-
provers and model-checkers, have been fruitfully applied to security analysis.

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 77–98, 2008.
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Paulson developed the technique of using a theorem-prover to formalize secu-
rity protocols and perform inductive proofs of security for these protocols [22].
Model-checking has been widely used both for finding bugs in security protocols
and for verifying finite instances of security protocols; Lowe’s use of FDR to find
a bug in the Needham-Schroeder protocol [20] is a well known example. Each of
these analysis techniques has its relative advantages and disadvantages. Model-
checking requires less human effort because it is fully automatic, once a system
and its desired properties are formalized. However, model-checking is limited
to (generally) small, finite instances of a system due to a state-explosion which
renders larger instances intractable. Clearly verification of a particular instance
of the system does not necessarily provide any guarantees about the system gen-
erally. This makes model-checking techniques more applicable for bug-finding
in security systems than for proving security guarantees. Theorem-proving usu-
ally requires a greater amount of human effort than model-checking because
proofs are not automatic and must be performed through interaction with the
theorem-prover. The advantage of theorem-proving is that proofs can be quan-
tified on the parameters of the system, allowing for a proof of security for the
system generally rather than for a particular finite instance. This advantage of
theorem proving is exemplified by the proof of privacy of the dining cryptogra-
phers protocol discussed in Section 3, which is valid for an unbounded number
of protocol participants. While theorem-proving is aimed at proof of correctness
rather than bug-finding, an unsuccessful proof attempt will provide insight into
the reason that the system fails. The further advantage of interactive theorem-
proving over pen-and-paper proofs is that proofs are guaranteed to be correct up
to the assumptions of the model. (Recent work by Blanchet [2] has focused on
bridging the gap between the computational-complexity proofs used by cryptog-
raphers and the assumption of perfect cryptographic-primitives commonly used
in formal-methods proofs). We do not to claim that a machine-assisted proof is
an absolute guarantee of security; Any proof of security is only valid up to the
level of abstraction at which the system is modeled – a point widely noted in
the literature where security and formal methods research intersect. However,
LCF-style theorem provers, such as the HOL4 system used in this work, do guar-
antee the logical consistency of all proofs they produce [16]. This is achieved by
using a small logical core from which all theorems must be derived using basic
inferences rules. A substantial amount of mathematical theory, including proba-
bility theory, which this work makes use of, has been previously been formalized
in HOL4. Since pen-and-paper proofs are often long, complicated, and prone
to errors, the guarantee of correctness provided by using a theorem-prover is
valuable, particularly for security applications.

Model-checking techniques have been successfully used to analyze various
PETs e.g. Shmatikov et al.’s use of PRISM [28] to analyze the Crowds pro-
tocol [23]. However, the author is unaware of any prior work applying theorem-
proving techniques to quantitative privacy analysis; this paper aims to begin
filling that void. In spirit this work belongs both to the branch of PETs research
begun by Serjantov, Danezis, and Dı́az and to the branch of formal methods work
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begun by Paulson. Recent work by Malacaria et al. proposed an Information-
Theoretic approach to analyzing the information leakage in programs [21] and
this work serves as inspiration for the formalized analysis technique presented
in this paper. We will now move on to examine a formalization of Shannon’s
Information Theory in Higher Order Logic (HOL) using the HOL4 theorem-
prover and the use of this formalization for quantifying the information leakage
of programs. Afterwards, the applicability of this technique to analysis of PETs
is demonstrated using the Dining Cryptographers problem [4] as a case study.
To the best of the author’s knowledge, this is the first machine-verified proof
of privacy of the Dining Cryptographers protocol for an unbounded number of
participants and a quantitative metric for privacy. Finally, future directions and
applications for this work will be presented.

2 Formal Analysis of Information Leakage Using HOL4

We will now examine a formalization of Shannon’s Information Theory in HOL4.
Basic concepts from information theory and probability theory will be explained
concurrently with their formalization for the benefit of the unfamiliar reader.
Hurd’s formalization of probability theory in HOL4 [18] serves as a starting
point for our formalization. In [18], Hurd formalized measure theory in HOL4
and building on this he formalized a definition for probability spaces and func-
tions on these. (See [14] for an excellent introduction to how probability theory
is derived from measure theory). Hurd then used this formalization to verify
the correctness of probabilistic algorithms. While the work presented in [18] was
a major milestone towards machine-verification of probabilistic algorithms, the
scope of that work had its limits. Important results for independent functions
on probability spaces were developed and theorems about the properties of a
probability measure were proved (e.g. the probability of the empty event is 0,
the probability of the universe of all measurable events is 1, and a probabil-
ity measure is countably additive); however, many concepts from probability
theory such as definitions for random variables, the expected value of random
variables, and conditional probability do not feature in [18]. In [17], Hasan built
upon Hurd’s work to define the expected value of and prove properties of some
common discrete probability distributions including the bernoulli distribution.
Unfortunately Hasan’s work is not directly applicable for the work presented
here, so we must begin where Hurd’s formalization ends by defining random
variables and their expectation.

2.1 Information Theory Formalized in HOL4

We will now derive a formalization of Information Theory in HOL from basic
elements of probability theory. First we recall textbook definitions for a probabil-
ity space and measurable events in this space. (The unfamiliar reader is referred
to [14,29] or similar introductory texts for further details). The formalization of
these two notions is part of the work in [18].
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Definition 1. Let P(outcomes) be the powerset of all possible outcomes of some
experiment. For a set Ω ⊆ P(outcomes) and function μ from elements of Ω
to R, (Ω, μ) defines a probability space iff (i) Ω is closed under countable-
unions, -intersections, and -complementations, (ii) Ω contains the universe of
all outcomes UNIV and the empty set {}, (iii) ∀x ∈ Ω. 0 ≤ μ(x) ≤ 1, (iv)
μ(UNIV) = 1 and μ({}) = 0, and (v) μ is countably-additive on Ω.

Definition 2. For a probability space (Ω, μ), each element of Ω is an event.
Each event denotes a set of outcomes for an experiment. For example, let E =
{saw 1 red bird, saw 1 blue bird} defines an event ≈ “saw 1 bird”. Events can be
combined using the usual set operations (Union, Intersection, Complementation,
Difference) to define other events.

We now move on to review a textbook definition of a random variable on a
probability space and to develop our formalization of this definition in HOL.

Definition 3. For a measurable space with measurable sets Ψ of type : ((β set)
set) and a probability space (Ω, μ), with sample space Ω of type : ((α set) set)
and probability measure μ of type : (α set → R), a random variable X is a
map of type : (α → β) s.t. ∀y. y ∈ Ψ ⇒ {x | X (x) ∈ y} ∈ Ω i.e. a random
variable is measurable function from the sample space of a probability space to
the measurable sets of a measurable space. The probability of X taking the value
x is defined as P(X = x) = μ {y | X (y) ∈ x}.

Typically, random variables are real- or natural-valued functions; however we
will use the more general definition for our formalization. We can formalize the
definition of a random variable and its probability measure in HOL as

random variable (s, mu) X =
prob space (s, mu) ∧ measurable X s UNIV

and
random variable prob (s, mu) X = λ x. mu {y | X(y) IN x}.

The attentive reader will have noticed that we are requiring a random variable
to be measurable on the universe of a type rather than some subset thereof. This
is because Ψ from Definition 3 must contain all of the singleton sets in order for
the expected value of a random variable to be well defined; any Ψ containing all
of the singleton sets is necessarily the universe because it must be closed under
countable unions in order to be measurable. This condition is clearly satisfied in
the typical case where Ψ is defined by the space of the real or natural numbers.

For the present discussion, we are restricting the probability distribution μ to
be a discrete probability distribution. This does not impose any real restriction
on our formalization as we are interested in statements of the form, “What is the
probability that the sender of this message was Bob?”, P(sender = Bob), rather
than statements of the form “What is the probability that the Bob’s weight is
less than 100kg?”, P(weight < 100). In the interest of brevity, we will also limit
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the present discussion to finite random variables i.e. those X and (s,mu) for
which

{x | random variable prob (s, mu) X {x} �= 0}

is finite; formalization of countable random variables i.e. those for which the
above set is countable will not be presented here, since finite random variables
suffice for the application of interest.

We are often interested in a vector of random variables, X1, . . . , Xn, rather
than a single random variable; the joint probability measure of such a vector is
the natural one P(X1 = x1, . . . , Xn = xn) = μ {y | X1(y) ∈ x1∧ . . .∧Xn(y) ∈ xn}.
A formalization of random vectors and their probability measures can be defined
using a list to represent the vector of random variables as follows

random vector (s, mu) [X] = random variable (s, mu) X
random vector (s, mu) (X :: XS) = random variable (s, mu) X ∧

random vector (s, mu) XS

and

random vector prob (s, mu) XS =
λ xs. mu {y | FOLDR ∧ � (MAP (λ b. (FST b) IN (SND b))

(ZIP (MAP (λ X. X(y)) XS) xs))},

where :: is the list construction operation, MAP maps a function over a list, ZIP
creates a list of pairs from two lists, FST and SND select the first and second ele-
ment of a pair respectively, and FOLDR is the fold-right operation on a list. Note:
we assume that xs is the same length as XS in order for random vector prob
to be sensibly defined above. For the sake of brevity, we will not present sepa-
rate definitions for functions on random variables and random vectors where the
extension is obvious.

Having formalized random variables and their probability measures, we now
move on to review the definition of the expected value of a random variable.

Definition 4. The expected value of a real-valued function f and a random
variable (or random vector) X is the average of the values taken by (f ◦ X )
weighted by the probability measure of X . The expected value is the most likely
value for (f ◦ X ) to take and is defined as

E(X ) =
∑

x

(
P(X = x)

)(
f(x)

)
.

In order to formalize a definition for the expected value of finite random vari-
ables in HOL, we must first define a function SUM which is the summation of a
real-valued function applied to the elements of a finite set. (Expected value for
countable random variables is defined using a countably-infinite summation, but
this formalization is outside the scope of this discussion). Due to its recursive
definition, SUM (f : α → real) (S : α set) is well defined only when S is finite.
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We then define a second HOL function sum f S = SUM f {s | f(s) �= 0}, which is
the summation of f over those elements of S for which f takes a non-zero value.
We can now formalize expected value in HOL as

expected value (s, mu) X f =

sum
(
λ x.

(
random variable prob (s, mu) X {x}

)(
f(x)

))
UNIV

for random variables, or

expected value (s, mu) XS f =

sum
(
λ xs.

(
random vector prob (s, mu) XS

(
MAP (λ x. {x}) xs

)(
f(x)

))

{xs | LENGTH xs = LENGTH XS}

for random vectors. (We allow this slight overloading as it is unlikely to cause
confusion.)

We are now ready to develop a formalization of information theory in HOL
from the formalizations for probability theory developed above. We begin by
reviewing the definition of the entropy of a random variable and then proceed
to formalize this definition in HOL. (Definitions for entropy and the other basic
definitions from information theory reviewed below can be found in [27]).

Definition 5. The entropy of a random variable (or random vector) X cap-
tures the uniformity of the probability measure of X i.e. the degree of uncertainty
as to which outcome will occur. If X takes a particular value with probability 1
then the entropy is 0. If the values of X with non-zero probability are uniformly
distributed (occur with equal probability) then the entropy is maximal.

H(X ) = −
∑

x

P(X = x) log(P(X = x)).

Building upon the formalization of expected value above, it is straightforward
to formalize the definition of entropy in HOL as

entropy (s, mu) X =
expected value (s, mu) X
(
λ x. lg

(
random variable prob (s, mu) X {x}

))

for random variables, or

entropy (s, mu) XS =
expected value (s, mu) XS
(
λ xs. lg

(
random vector prob (s, mu) XS (MAP (λ x. {x}) xs)

))

for random vectors, using lg to abbreviate log2. We choose to use a base of 2 for
the logarithm in our formalization of entropy because of its correlation to bits
of information; this is the typical choice for information-theoretic analysis. The
reader is directed to [27] for a detailed explanation of this choice. We now move
on to the information-theoretic concept of conditional entropy, first reviewing
its definition and then developing its formalization in HOL.
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Definition 6. The conditional entropy of random variable (or random vec-
tor) X conditioned on the value of random variable Y measures the uncertainty
of X given knowledge of Y and is defined as

H(X|Y) =
∑

y

P(Y = y)
(

−
∑

x

P(X = x|Y = y) log(P(X = x|Y = y)
)
.

In order to formalize a definition for conditional entropy in HOL, we must
first develop a formalization for the conditional probability measure of two ran-
dom variables (or random vectors). We recall for the reader that the condi-
tional probability of two random variables (or random vectors), X and Y, is
P(X = x |Y = y) = P(X = x, Y = y)/P(Y = y), where P(X = x, Y = y) is
the joint probability measure of X and Y. The formalization of this definition in
HOL is straightforward and as follows:

random variable cond prob (s, mu) X Y =
λ (x, y).

(
random vector prob (s, mu) [X; Y] [x; y]

)
/

(
random variable prob (s, mu) Y y

)

and

random vector cond prob (s, mu) XS YS =
λ (xs, ys).

(
random vector prob (s, mu) (XS++YS) (xs++ys)

)
/

(
random vector prob (s, mu) YS ys

)
,

where ++ is the list-concatenation operation. We now formalize conditional
entropy in two steps, first defining something we will call conditioned entropy as

conditioned entropy (s, mu) X Y =

λ y. − sum
(
λ x.

(
random variable cond prob (s, mu) X Y (x, y))

lg
(
random variable cond prob (s, mu) X Y (x, y)

))
UNIV

for random variables, or

conditioned entropy (s, mu) XS YS =

λ ys. − sum
(
λ xs.

(
random vector cond prob (s, mu) XS YS (xs, ys))

lg
(
random vector cond prob (s, mu) XS YS (xs, ys)

))

{xs | LENGTH xs = LENGTH XS}

for random vectors, and finally defining conditional entropy as

conditional entropy (s, mu) X Y =
expected value (s, mu) Y (conditioned entropy (s, mu) X Y).
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Building upon the formalizations developed above, we conclude this section
by formalizing the definitions of mutual information and conditional mutual
information; we first review the standard definition of each of these concepts
before presenting its formalization in HOL.

Definition 7. The correlation between two random variables (or random vec-
tors) X and Y is captured by their mutual information, I(X ; Y). The greater
their mutual information the greater the correlation between X and Y. Thus
when X and Y are independent I(X ; Y) = 0. Mutual information measures the
amount of information about X that can be obtained by observing Y (and vice
versa).

I(X ; Y) = H(X ) − H(X|Y) = H(Y) − H(Y|X ) = I(Y; X )

We now formalize mutual information in HOL as

mutual information (s, mu) X Y =
entropy (s, mu) Y − conditional entropy (s, mu) X Y.

Definition 8. The conditional mutual information, I(X ; Y|Z), of random
variables (or random vectors) X and Y conditioned on random variable (or ran-
dom vector) Z captures the correlation between X and Y given Z. Conditional
mutual information measures the amount of information about X that can be
learned by observing Y (and vice versa) given knowledge of Z.

I(X ; Y|Z) = H(X|Z) − H(X|Y, Z) = H(Y|Z) − H(Y|X , Z) = I(Y; X|Z)

Conditional mutual information is formalized in HOL as

conditional mutual information (s, mu) X Y Z =
conditional entropy (s, mu) X Z −
conditional entropy (s, mu) X (Y++Z).

2.2 Information Leakage Analysis

Having formalized a sufficient portion of information theory in HOL, we now
proceed to develop an information-theoretic approach to analyzing the informa-
tion leakage of programs using HOL. Intuitively, a program leaks information
when an observer who knows (or can control) the low-security inputs to the
program can learn or infer something about the high-security inputs to the pro-
gram by observing the program’s outputs. We recall from the previous section
that conditional mutual-information of X and Y given Z, I(X ; Y|Z), measures
the amount of information that can be learned about X by observing Y, given
knowledge of Z. If L is a random variable ranging over the low-security inputs to
a particular program, H is a random variable over the high-security inputs, and
O is a random variable over the program’s outputs, then I(O; H|L) (or equiv-
alently I(H; O|L)) measures the knowledge about the high-security inputs to
the program that can be learned by observing the outputs of the program, given
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knowledge of the low-security inputs. Borrowing from the work of Malacaria [21],
Denning [9,10], Clark [5], et al., we define the information leakage of a determin-
istic program to be I(O; H|L). For privacy (or anonymity) analysis, I(O; H|L)
measures how much is learned about private (or identifying) information by an
attacker who observes the outputs of a particular program and knows (or con-
trols) any non-private inputs. In [6] Clark, et al. show that, for a deterministic
program, the program is non-interfering iff I(O; H|L) = 0.

Programs to be analyzed are modeled in HOL as functions from low and
high input states to output states. States are defined to be a polymorphic type,
β state, s.t. states are functions string → β, namely from variable names to
values. Note that this allows us to have infinite state, e.g. β = R; the only re-
striction we make, as noted earlier, is that probability distribution over states is
non-zero for a finite number of states. Because HOL functions are deterministic
and terminating, the programs we are able to model are also inherently so. We
do not consider the termination requirement to be a severe restriction, but many,
if not most, PETs involve probabilistic non-determinism in their design which is
essential to their privacy guarantees. Fortunately, this restriction is easily over-
come. Drawing again from Malacaria et al. [21], we introduce a component of the
program input accounting for random behavior. This portion of the input state
essentially serves as an oracle determining the resolution of the randomness on a
given run of the program, with the distribution over the random behavior simply
determined by the distribution over the random input states. For example, the
following probabilistic algorithm involving a coin flip and a high and low input
variable if heads then l:=h else l:=l+1 becomes a deterministic algorithm
involving high, low, and random input variables if r == 1 then l:= h else
l:=l+1, assuming the a priori distribution on r is s.t. the probability that r ==
1 is 1/2.

Proceeding from above, we define another HOL type β prog state, which is
the 4-tuple, : βstate ∗ βstate ∗ βstate ∗ βstate, representing a possible program
execution: (high, low, random, output).

Definition 9. A program space is a pair (M, (s, mu)) of a HOL function mod-
eling a program, M (high, low, random) : (βstate ∗ βstate ∗ βstate) → βstate,
and a probability space, (s, mu), s.t. s = UNIV: β prog state and ∀ h l r o.
(o �= M(h, l, r)) ⇒ (mu(h, l, r, o) = 0).

The first condition in the definition of a program space, s = UNIV, ensures that
any program execution (i.e. anything of type : prog state) is measurable by mu;
the second condition ensures that only valid executions (i.e. those whose output
is equal to the program applied to the inputs) have non-zero probability. The
probability distribution mu over possible program executions for a particular
program M captures the a priori distribution of high, low, and random input
states and the a posteriori distribution on the outputs of M for these inputs. The
four random variables

H = λx.{(h, l, r, o)| h = x}, L = λx.{(h, l, r, o)| l = x},

R = λx.{(h, l, r, o)| r = x}, O = λx.{(h, l, r, o)| o = x}
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define equivalence relations on program executions based on the high input, low
input, random input, and output respectively. In our HOL formalization, the
random variables H, L, and O correspond to the random variables H, L, and O
in the definition of leakage for deterministic programs above. (Note: H, L, and O
are random variables from s to s, so random variable prob (s, mu) H h reduces
to mu(H h) and similarly for L and O and random vector prob). Now we can
formalize leakage in HOL for a deterministic program M and a program space
(M, (s, mu)) as

Definition 10 (Leakage for deterministic programs)

leakage (M, (s, mu)) = conditional mutual information (s, mu) O H L.

We have successfully formalized leakage for a deterministic program in HOL,
but before defining information leakage for a probabilistic program, we must
consider our view of the probabilistic non-determinism in the program. There
are two possible views of the non-determinism in the program corresponding to
differing capabilities of an observer/attacker. On the one hand, we have the case
where an attacker, who is trying to learn about the high input from the output,
can observe (but not control) the outcome of the random events (e.g. knows
that the coin-flips came up heads) in a particular execution of the program. We
shall term this view of the probabilistic behavior as visible probabilism, since
the resolution of the non-determinism is known to the observer. On the other
hand, we have the case where the attacker knows that the resolution of the
nondeterminism follows a particular distribution (e.g. knows that a fair coin is
flipped), but cannot observe directly how the nondeterminism is resolved in a
particular execution of the program (e.g. doesn’t know that the coin-flip was
heads this time). We shall term this view of the probabilistic behavior as hidden
probabilism, since the resolution of the non-determinism is hidden from the
observer.

If we consider a program to have visible probabilism, then the leakage of
the program is the amount of information about the high-security inputs that
can be learned from the outputs given knowledge of the low-security inputs
and the resolution of the non-determinism; however if we consider a program
to have hidden probabilism, then the leakage of the program is the amount of
information about the high-security inputs that can be learned from the outputs
given knowledge of the low-security inputs only (i.e. without knowledge of the
resolution of the non-determinism). This understanding of leakage is captured by
defining leakage to be I(O; H|(L, R)), for programs with visible probabilism, and
I(O; H|L), for programs with hidden probabilism, where R is a random variable
ranging over the random inputs to the program that resolve the nondeterminism
in a particular run of the program. We can now formalize information leakage
of a nondeterministic program M and a program space (M, (s, mu)) as

Definition 11 (Leakage for programs with visible probabilism)

leakage (M, (s, mu)) = conditional mutual information (s, mu) O H (L++R),
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Definition 12 (Leakage for programs with hidden probabilism)

leakage (M, (s, mu)) = conditional mutual information (s, mu) O H L.

Note: we could analyze a program that contains both visible and hidden proba-
bilism by splitting the random input into a visible component and hidden com-
ponent and conditioning the measurement of conditional mutual information on
the visible component of the random input.

It is important to distinguish these two views of the nondeterminism in our
analysis of information leakage in order to be clear what we are measuring. The
case study in Section 3 is an excellent example of this as there is no leakage
if the probabilism is hidden (i.e. the outcomes of the coin flips are not known
to an observer), but the leakage is total if the probabilisim is visible (i.e. the
outcomes of the coin flips are known to an observer). In [21], Malacaria et al.
do not consider this distinction between the two views of nondeterminism in
their analysis. They note that for deterministic programs H(O|(H, L)) = 0, so
I(O; H|L) = H(O|L). Malacaria et al. recognized this potential computational
optimization for deterministic programs, but also noted that it may overesti-
mate leakage for programs with probabilistic non-determinism [21]. Malacaria’s
example is the program l := random(0,1), which sets the output to be 0 or 1
with equal probability. For the program above H(O|L) = 1, while I(O; H|L) = 0,
so there is an overestimation of the leakage of the program. Malacaria proposes
that this “extra” leakage can be attributed to uncertainty in the output resulting
from the randomness of the program and can be eliminated by conditioning on
the random input. Thus they define leakage for nondeterministic programs to be
I(O; H|(L, R)) = H(O|(L, R)), which is our definition of leakage for programs
with visible nondeterminism only. Therefore, if we were to apply the definition
for the leakage of nondeterministic programs adopted in [21] to the case study
in Section 3, we would get the unintuitive result that a program which is known
to be secure has a total leakage of information. We consider this distinction
of visible and hidden probabilism in our definitions for information leakage of
nondeterministic programs to be an important contribution of our work.

2.3 Assistance for the Uniformly Distributed Case

In order to prove some property of the information leakage of a program in
HOL, we must first model the program and the probability space of possi-
ble program executions as HOL terms M and (s, mu). Since our definitions for
leakage in HOL are well defined for any M and (s, mu) of the appropriate type,
we are obligated to prove that the (s, mu) is in fact a probability space and
that (M, (s, mu)) is a program space. Recognizing that some effort is required
for these proofs, we have defined a HOL function unif prog space which takes
as its arguments a program modeled in HOL, M, a set of high input states,
high, a set of low input states, low, and a set of random input states, random;
unif prog space(M, high, low, random) is the program space for M whose proba-
bility distribution is uniformly distributed over {(h, l, r, M(h, l, r))| h IN high ∧
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l IN low∧r IN random}. We have proved that, for any M, high, low, and random
which are finite and nonempty, unif prog space defines a valid program space.
While we will not always be interested in analysis when the inputs are evenly
distributed this will often be the case (as it is for the case study), so some
initial effort has been eliminated for further applications of our technique. Fur-
thermore, we have developed automation in HOL that proves the leakage of
a unif prog space for small, finite instances nearly fully-automatically. This
automation is only useful for small examples because its memory and computa-
tional overheads grow rapidly with the size of the example, but is still of value
for automatically proving the base case of a general inductive proof of leakage
or as an initial check of our intuitions about the leakage of a program.

3 Case Study: The Dining Cryptographers

Having outlined a method for proving the information leakage of a program in
HOL, we now go on to demonstrate the applicability of this technique to proving
privacy properties of PETs by proving the total-anonymity of the Dining Cryp-
tographers protocol [4]. We begin below by developing a model for the Dining
Cryptographers protocol in HOL using the techniques of the previous section;
the protocol is briefly explained for the benefit of the unfamiliar reader. Finally,
we discuss the relationship between information-leakage and anonymity for the
dining cryptographers protocol. Our information-theoretic proof of anonymity
for the dining cryptographers protocol in HOL4 is outlined in Appendix A.

3.1 Modeling the Dining Cryptographers Protocol in HOL

In Chaum’s original presentation of the Dining Cryptographers problem [4],
a group of cryptographers sit down to dinner and are immediately informed
by the Mâıtre d’hôtel that the bill has already been paid. They come to the
conclusion that either one of their party has paid, or the bill has been paid by
some external agency such as the NSA. They would like to determine which of
these has occurred while preserving the anonymity of the payer, in the event that
one of the cryptographers has paid. The following solution is suggested. Each
cryptographer flips a fair coin under the table and shares the outcome of the coin
flip with the cryptographer to his left. All the cryptographers then announce the
bitwise exclusive-or (xor) of the two coins they have seen (their own and that
of the cryptographer to the right) and whether or not he/she has paid. If the
bitwise xor of these announcements is true, then one of the cryptographers has
paid, otherwise some outside agency has paid. The anonymity of the Dining
Cryptographers protocol relies on the fairness of the coins and properties of
xor; Chaum proved the total anonymity guarantee of the Dining Cryptographers
protocol in [4]. Note that the nondeterminism inherent in the coin-flipping of the
Dining Cryptographers protocol is that which we classified as hidden probabilism
in the previous section, because the coins are flipped under the table where they
cannot be observed.



Formalized Information-Theoretic Proofs 89

We begin formalizing the Dining Cryptographers protocol in HOL by defining
the sets of valid high-security, low-security, and random input-states. The type
of state used is : string → boolean and since the state is infinite (there are an
infinite number of possible variable names) we fix on the convention that any
variable names we don’t use map to the value ⊥. The high input identifies which
cryptographer has paid when one of them has and we index the cryptographers
from 0 to n − 1, where there are n cryptographers. If the NSA has paid, the
input is that n has paid. We can then define the set of valid high-security inputs
as dc high states n � = {(λs. s = “pays n”)}, when the NSA has payed,
and dc high states n ⊥ = {(λs. s = “pays i”) | i < n}, when one of the
cryptographers has paid. There are no low-security input variables, so we use
dc low states = {(λs.⊥)} as our null low-input. The random inputs consist of
all the possible combinations of coin flips for the n cryptographers, namely those
states that map any variable other than “coin 0”, . . . , “coin n − 1′′ to ⊥:

dc random states n = {x | ∀s.(∀i.i ≮ n ∨ s �= “coin i”) ⇒ ¬ x s}.

We will now define the HOL function formalizing the Dining Cryptographers
protocol; this is done in several parts corresponding to the various stages of
the protocol. First the cryptographers’ high-security coin values are set from
the random-input. While this step is not strictly necessary and the coins from
the random input could be used in the program directly (without affecting the
analysis), this definition seems to reflect more directly the original definition.
Note that HOL functions are typically defined recursively.

set coins high random 0 =
(λs. if s = “coin 0” then random s else high s)

set coins high random (n + 1) =
(λs. if s = “coin (n + 1)” then random s

else set coins high random n s)

The next step of the protocol is to set the announcements of each cryptographer.
Since our cryptographers are indexed linearly, 0, . . . , n − 1, rather than sitting
around a circular table, we adopt the convention that for 0 ≤ i < n − 1 cryptog-
rapher i + 1 looks at coin i + 1 and coin i and cryptographer 0 looks at coin 0
and coin n − 1.

set announcements low high n 0 =
(λs. if s = “announces 0” then

(high “pays 0”) xor (high “coin 0”) xor (high “coin n”)
else high s)

set announcements low high n (i + 1) =
(λs. if s = “announces i + 1” then

(high “pays i + 1”) xor (high “coin i + 1”) xor (high “coin i”)
else set announcements low high n i s)
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The final step of the protocol is to determine the result (whether one of the
cryptographers has paid or not) by xor-ing their announcements. This is done
by defining two HOL functions, a helper-function to compute the bitwise xor of
the announcements and the function that sets the result to this value.

xor announces low 0 = low “announces 0”
xor announces low (i + 1) =

(low “announces i + 1”) xor (xor announces low i)

compute result low n =
(λs. if s = “result” then xor announces low n else low s)

All that is necessary to complete our formalization of the Dining Cryptographers
protocol in HOL is the definition of the function that connects the stages we have
defined.

dcprog (n + 3) high low random =
compute result(set announcements low

(set coins high random (n + 2))
(n + 2) (n + 2))

(n + 2)

Note: the function defining the overall protocol is for the argument n + 3, where
0 ≤ n, because the protocol is only valid for three or more cryptographers.
The program space modeling the Dining Cryptographers protocol is the one in
which the probability distribution is evenly distributed over the valid input-states
identified above; this can easily be defined using unif prog space described in
the previous section as

dc prog space n nsapays =
unif prog space (dc prog n)

(dc high states nsapays n) dc low states (dc random states n).

3.2 An Information-Theoretic Proof of the Dining Cryptographers

Having formalized a program space modeling the Dining Cryptographers pro-
tocol above, we can analyze the information leakage of this protocol using the
information-theoretic technique developed in the previous section. We are in-
terested in how much information might be leaked by the protocol about the
identity of a cryptographer who has payed the bill, so we focus on the case where
one of the cryptographers has payed; the proof of correctness when the NSA has
payed is relatively straightforward. We recall from above that leakage measures
how many bits of the high-security input can be learned by someone who knows
the low-security inputs and observes the outputs; depending on whether or not
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we deem the probabilism in the protocol to be visible or hidden, the observer
may also know the resolution of the probabilistic behavior in the protocol. In
the case of the Dining Cryptographers protocol, there are no low-security inputs
to be known and we consider the probabilism to be hidden, since the coins are
flipped under the table. The outputs of the protocol are the announcements each
cryptographer makes and the overall result (i.e. the xor of the announcements).
The high-security input states whether or not cryptographer i has payed, for
each of the 0 ≤ i ≤ n − 1 cryptographers. Exactly one of the cryptographers
will have paid, so there are n − 1 possible high inputs which are equally likely
a priori. The high-security input is precisely the identity of the cryptographer
who has payed and amounts to lg(n − 1) bits of information. In terms of our
anonymity analysis this means that a leakage measure of lg(n−1) would denote
that all of the bits of the high-security input can be learned, so an observer can
positively identify the payer and anonymity is completely compromised. If we
were to obtain a leakage measurement of (lg(n − 1))/2, then half of the the bits
of the high-security input can be learned and an observer can eliminate half of
the cryptographers as candidates for being the payer. A leakage measurement of
0 would mean that an observer cannot learn anything about the identity of the
payer from the outputs and total anonymity is maintained.

A proof of the total anonymity of the Dining Cryptographers protocol in
HOL using the formalizations developed above can be found in Appendix A.
The goal we prove is that, for three or more cryptographers (n ≥ 3), when
one of the cryptographers has paid (nsapays = ⊥), the information leakage of
dc prog space is 0. Due to space constraints, we are only able to outline the
HOL proof; the full script for the proof in HOL4 is approximately 1700 lines.
When outlining the proof we choose to focus on the more interesting information-
leakage aspects of the proof rather than the routine correctness aspects of the
proof. Recall that every step of the proof is guaranteed by HOL4 to be logically
consistent with our formalization of the protocol, probability theory, and any
other mathematical theories used.

4 Summary and Future Work

Above we have developed an information-theoretic technique for proving the infor-
mation leakage of programs formalized in the HOL4 theorem-prover. The advan-
tageof thismethodbeing information-theoretic is that it isquantitativeandcapable
of capturing partial information-leakage. Furthermore, by formalizing our analysis
in HOL4, any proofs about information-leakage are guaranteed to be logically and
mathematically consistent (up to the level of abstraction of the formalization).

After explaining this technique for proving information-leakage in HOL, we
demonstrated its applicability to proving privacy properties of PETs by proving
the total-anonymity of the Dining Cryptographers protocol [4]. As far as the
author is aware, this is the first proof of the anonymity of the Dining Cryptog-
raphers protocol, for an unbounded number of cryptographers, mechanized in a
theorem-prover using a quantitative, information-theoretic metric for anonymity.
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Since it was first proposed, Chaum’s Dining Cryptographers protocol has fre-
quently been used as an initial case study for many formal methods for analyz-
ing privacy [1, 8, 25]. Now twenty years after it was first proposed, the Dining
Cryptographers may be considered a “toy” example when compared to deployed
PETs, but it remains useful as an initial proof-of-concept for analysis techniques
before applying them to more realistic examples.

As the author considers the case study above as a proof-of-concept for the
methodology developed in this paper, future work will include the use of this
technique to prove privacy properties of deployed PETs. There are numerous
possible applications including anonymous communications systems such as [7,
13,15,19,23,24]. Another interesting use would be to analyze the privacy leakage
of algorithms designed to “anonymize” databases e.g. for releasing anonymized
versions of government-controlled medical-databases for research purposes.

Another area for future work, is to develop a more robust attacker model for
this analysis technique. As presented above, the attacker is a passive observer
who cannot inject arbitrary messages into the system, etc. This is sufficient to
model many attacks for the dining cryptographers e.g. two cryptographers sitting
across from each other can collude and determine which side of the table the
payer is on (We model this by making the coins the two cryptographers see part
of the visible probabilism). However, a passive attacker is insufficient for most
attacks on more sophisticated examples, so this remains an important future
development for this line of research.
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A Proof of Anonymity for the Dining Cryptographers

We define program, prob, and events s.t. program takes a program space
(M,(s,mu)) as its argument and gives the program component M. Similarly,
prob and events give the probability measure and the events of a program
space respectively. We abbreviate

p n = prob (dc prog space (n+3) ⊥), e n = events (dc prog space (n+3) ⊥),

prog n = program (dc prog space (n + 3) ⊥),

valid n = {s | prob n s �= 0}, high n = dc high states (n + 3) ⊥,

(similarly for dc low states and dc random states), and finally

output n = IMAGE (λ x. prog n x) (high n CROSS low n CROSS random n).

Lemma 1 (There are (n + 3)(2n+3) valid program-states)

∀ n. CARD (valid n) = (n + 3)(2n+3)

Proof. Follows directly from basic definitions. Intuitively, there are n+3 possible
high-inputs, 2n+3 possible random-inputs, and 1 low-input.

Lemma 2 (A valid program-state has probability 1/((n + 3)(2n+3)))

∀ n s. s IN (valid n) ⇒
(
p n {s} = 1/((n + 3)(2n+3))

)

Proof. Follows directly from basic definitions and Lemma 1. This result is obvi-
ous, since the valid program-states are uniformly distributed.

Lemma 3 (There are 2 valid states for a given output and high-input)

∀ o h n. o IN output n ∧ h IN high n ⇒
(
CARD{r | (h, (λ s.⊥), r, o) IN valid n} = 2

)

Proof. We begin by defining a function which determines if a random input r is
valid for output o when cryptographer h pays:

coins valid r o h n 0 =
(
r “coin0” = r “coin(n+ 2)” xor (XOR o 0) xor (0 ≮ h)

)

coins valid r o h n (i + 1) =
(
(r “coin(i+ 1)” =

r “coin(n+ 2)” xor (XOR o (i + 1)) xor (i + 1 ≮ h)) ∧
coins valid r o h n i

)
,

where XOR out i is the pointwise xor of the announcements 0 through i. It is
then straightforward to prove

∀ n h o. h ≤ (n + 2) ∧ o IN output n ⇒
(
{r | ((λ s.s = “pays h”), (λ s.⊥), r, o) IN valid n} = (1)

{r | r IN random n ∧ coins valid r o h n (n + 2)}
)
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by induction. We then define a function that constructs a valid random-input
given o, h, and our choice of whether the first coin is heads or tails

make r o h n choice 0 =
(
λ s. if s = “coin0” then

choice xor (XOR out 0) xor (0 ≮ h) else ⊥
)

make r o h n choice (i + 1) =
(
λ s. if s = “coin(i+ 1)” then

choice xor (XOR out (i + 1)) xor (i + 1 ≮ h) else

make r o h n choice i s
)

and prove by induction that

∀ n h o. h ≤ (n + 2) ∧ o IN output n ⇒
(
{r | r IN random n ∧ coins valid r o h n (n + 2)} = (2)

{make r o h n � (n + 2); make r o h n ⊥ (n + 2)}
)

from which our goal immediately follows.

Lemma 4 (There are 2(n + 3) valid states for a given output)

∀ n o. o IN output n ⇒
(
CARD {s | s IN valid n ∧ s IN O o} = 2(n + 3)

)

Proof. By the definition of valid and set operations, it is sufficient to prove that

∀ n o. o IN output n ⇒
(
CARD

(
IMAGE (λ (h, r). (h, (λ s.⊥), r, o))

{(h, r) | h IN high n ∧ (h, (λ s.⊥), r, o) IN valid n}
)

= 2(n + 3)
)

and by a property of the cardinality of the image of an injective function

∀ n o. o IN output n ⇒
(
CARD {(h, r) | h IN high n ∧ (h, (λ s.⊥), r, o) IN valid n} = 2(n + 3)

)
.

Our goal follows from Lemma 3, and that there n + 3 possible high-states.

Lemma 5 (The probability of a valid output is 1/2n+2)

∀ n o. o IN output n ⇒ (p n O o = 1/2n+2)

Proof. By Lemma 2 and basic definitions the goal is equivalent to

∀ n o. o IN output n ⇒
(
SUM (λ s. 1/((n+ 3)(2n+3))){s | s IN valid n ∧ s IN O o} = 1/2n+2

)
.

Since the above is a summation over a constant function, it is equivalent to

∀ n o. o IN output n ⇒
((

1/((n + 3)(2n+3))
)(
CARD{s | s IN valid n ∧ s IN O o}

)
= 1/2n+2

)
,

which is easily provable by Lemma 4 and basic arithmetic.
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Lemma 6 (There are 2n+2 valid outputs)

∀ n. CARD(output n) = 2n+2

Proof. Similarly to Lem. 3, we begin by defining a function that constructs the
list of valid outputs,

announces list 0 = [(λ s. s = “announces0”); (λ s.⊥)]
announces list (i + 1) =

(
MAP

(
λ s. (λ x. if x = “announces(i+ 1)” then � else s x)

)

announces list i
)

+ +
(
MAP

(
λ s. (λ x. if x = “announces(i+ 1)” then ⊥ else s x)

)

announces list i
)

outputs list (n + 3) = MAP
(
λ l s. (s = “result”) ∨

(if s = “annouces(n+ 2)” then¬(XOR l (n + 1)) else l s)
)

announces list (n + 1).

Building on proofs of the correctness of our model of the d.c. protocol, we can
inductively prove that ∀ n x. x IN output n = x MEM outputs list (n+3). Two
relatively straightforward inductive proofs yield that

∀ n. ALL DISTINCT(outputs list n) (3)

(all the members of outputs list are distinct) and that

∀ n. LENGTH(outputs list (n + 3)) = 2n+2 (4)

from which our goal follows.

Theorem 1 (Conditional entropy of O given L is n + 2)

∀ n. conditional entropy (e n, p n) [O] [L] = n + 2

Proof. Since there is only one valid low-input, (λ s.⊥), the goal reduces to

∀ n. − SUM
(
λ o. (p n O o)(lg(p n O o)

)
(output n) = n + 2

by Definitions 4 and 6 and basic arithmetic. Using Lemma 5 the goal becomes

∀ n.
(
(1/2n+2)(lg(1/2n+2))

)(
CARD (output n)

)
= n + 2

which follows from Lemma 6, properties of lg, and basic arithmetic.

Lemma 7 (Probability of a high state is 1/(n + 3))

∀ n h. h IN high n ⇒ (p n H h = 1/(n+ 3))
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Proof. Follows from the fact that there are n + 3 evenly distributed high-inputs.

Lemma 8 (There are 2 states with a given output and high-input)

∀ n h o. h IN high n ∧ o IN IMAGE (λ r. prog n (h, (λ s.⊥), r)) random n ⇒
(
CARD{s | s IN H h ∧ s IN O o ∧ s IN valid n} = 2

)

Proof. By the basic definitions for the protocol, the goal is equivalent to

∀ n h o. h ≤ (n + 2) ∧ o IN IMAGE (λ r. prog n ((λ s.s = “pays h”), (λ s.⊥), r))
random n ⇒

(
CARD{r | ((λ s.s = “pays h”), (λ s.⊥), r, o) IN valid n} = 2

)
,

which follows from (1) and (2) in Lemma 3.

Lemma 9 (Probability of a valid output & high input is 1/((n+3)2n+2))

∀ n h o. h IN high n ∧ o IN IMAGE (λ r. prog n (h, (λ s.⊥), r)) random n ⇒
(
random vector prob (e n, p n) [O; H] [o; h] = 1/((n + 3)2n+2)

)

Proof. By Lemma 2 and basic definitions, the goal becomes

∀ n h o. h IN high n ∧ o IN IMAGE (λ r. prog n (h, (λ s.⊥), r)) random n ⇒
(
SUM (λ s. 1/((n + 3)2n+3))

{s | s IN O o ∧ s IN H h ∧ s IN valid n} = 1/((n + 3)2n+2)
)
,

which further reduces to

∀ n h o. h IN high n ∧ o IN IMAGE (λ r. prog n (h, (λ s.⊥), r)) random n ⇒
(
(1/((n + 3)2n+3))(CARD{s | s IN O o ∧ s IN H h ∧ s IN valid n}) =

1/((n + 3)2n+2)
)

by properties of SUM. The above follows from Lem. 8 and basic arithmetic.

Lemma 10 (There are 2n+2 valid outputs for a given high-input)

∀ n h. h IN high n ⇒
(
CARD(IMAGE (λ r. prog n (h, (λ s.⊥), r)) random n)=2n+2

)

Proof. By (3) and (4) of Lemma 6 it is sufficient to prove that

∀ n h x. h IN high n ⇒
(
x IN IMAGE (λ r. prog n (h, (λ s.⊥), r))

random n = x MEM outputs list (n + 3)
)

which can be proved using the correctness properties of our definition of the
protocol. Further details of this proof are omitted due to space constraints.

Lemma 11 (Conditioned entropy of O given H and L is −(n + 2))

∀ n h. h IN high n ⇒
(
conditioned entropy (e n, p n) [O] [H; L] [h; (λ s.⊥)] = −(n + 2)

)
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Proof. Since there is only one valid low-input, (λ s.⊥), the goal reduces to

∀ n h. h IN high n ⇒
(

− SUM
(
λ o. (λ x. x(lg x)) (random vector prob (e n, p n) [O; H] [o; h])/

(p n H {h})
)
IMAGE (λ r. prog n (h, (λ s.⊥), r)) random n = −(n + 2)

)

by Def. 6, which then further reduces to

∀ n h. h IN high n ⇒
(

−
(
1/2n+2(lg(1/2n+2))

)

(
CARD(IMAGE (λ r. prog n (h, (λ s.⊥), r)) random n

)
= −(n + 2)

)

by Lems. 7 and 9 and properties of SUM. The above follows from Lem. 10, a prop-
erty of the cardinality of the image of an injective function, and basic arithmetic.

Theorem 2 (Conditional entropy of O given H and L is n + 2)

∀ n. conditional entropy (e n, p n) [O] [H; L] = n + 2

Proof. Since there is only one valid low-input, (λ s.⊥), the goal reduces to

∀ n. − SUM
(
λ h. (p n H h)(conditioned entropy (e n, p n) [O] [H; L] [h; (λ s.⊥)])

)

high n = n + 2

which is equivalent to

∀ n. SUM
(
λ h. (n + 2)/(n+ 3)

)
high n = n + 2

by Lemmas 7 and 11 and basic arithmetic. Since the summation above is of a
constant function, the goal reduces to

∀ n.
(
CARD(high n)

)(
(n + 2)/(n + 3)

)
= n + 2,

which follows directly from basic arithmetic and the fact that there are n+3 valid
high-inputs.

Theorem 3 (TheDiningCryptographer’sprotocol preserves anonymity)

∀n. leakage (dc prog space (n + 3) ⊥) = 0

Proof. Follows directly from Defs. 8 and 12, Thms. 1 and 2, and basic arithmetic.
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Abstract. In 2004, Danezis and Laurie proposed Minx, an encryption
protocol and packet format for relay-based anonymity schemes, such as
mix networks and onion routing, with simplicity as a primary design goal.
Danezis and Laurie argued informally about the security properties of
Minx but left open the problem of proving its security. In this paper, we
show that there cannot be such a proof by showing that an active global
adversary can decrypt Minx messages in polynomial time. To mitigate
this attack, we also prove secure a very simple modification of the Minx
protocol.

1 Introduction

In many situations, the ability to communicate anonymously is desirable. Pri-
vacy is a valued commodity among internet users, and several cryptographic
protocols rely on the existence of anonymous channels. One proposed method of
implementing anonymous channels is mix networks. First proposed by Chaum
[4], a mix network works by routing messages through a series of mixes. Each
mix in the network performs a cryptographic transformation on a received mes-
sage before resending it, thus making the tracking of messages from mix to mix
and sender to receiver very difficult. This process, which is sometimes referred
to as onion routing, focuses on routing messages encrypted in a concentric, or
layered, fashion, known as onions [9]. Each layer of an onion contains routing
information for one node, with the goal being that each node in the network
can only decrypt enough information to send the encrypted message to the next
node in the path [3,5].

Several works have proposed encryption schemes for use in this setting; one
scheme of interest is Mixminion, proposed as a successor to the popular Mix-
master scheme [7]. Since the design of Mixminion, several authors [13,3] have
proposed schemes with some form of provable security guarantees, although
these schemes do not allow for the anonymous replies supported by Mixminion.
Additionally, several schemes based on universal reencryption [11] have been
proposed; Danezis [6] has shown that several such schemes are not secure when
applied to a mixnet.

This paper is concerned primarily with Minx, a packet format and encryption
scheme proposed by Danezis and Laurie in 2004 [5]. Minx was designed to pro-
vided the same security properties provided by Mixminion but using simplicity

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 99–114, 2008.
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as a key design goal. The authors provide an informal argument for the secu-
rity of Minx, but leave its formal proof of security as an open question, to be
addressed in the future literature.

We resolve this question negatively, by showing that a theoretical algorithm
developed by H̊astad and N̊aslund [12] can be used to exploit a subtle flaw
in the Minx design and allow a global active adversary to decrypt messages
encrypted under Minx in polynomial time. However, we also present a simple
modification to Minx that prevents this attack while preserving its anonymous
reply functionality, and prove its security under a security definition derived
from the notion proposed by Camenisch and Lysyanskaya [3].

The remainder of this paper is organized as follows: Section 2 gives an overview
of the Minx protocol; Section 3 presents our attack; Section 4 proposes a sim-
ple modification to mitigate the attack; Section 5 introduces a formal security
definition for Minx; using this definition, Section 6 proves the security of our
modification; and finally Section 7 provides concluding remarks.

2 Minx

The design of Minx is motivated by the desire to provide simpler operation
and lower overhead than Mixminion without sacrificing security. Minx’s packet
format and associated mix server operation is quite simple, as it removes aspects
of Mixminion deemed too complex by Minx’s authors. These removed aspects
include integrity checks for sent messages and a “swap step” designed to thwart
attacks based upon traffic analysis [7,5].

Instead of attempting to detect tagged messages via integrity checks, Minx
nodes process and forward all packets they receive. This prevents an attacker
from tagging the end of a message in the hopes of noticing a dropped packet when
the modification to the packet format is discovered. Furthermore Minx uses error
propagating block ciphers so that tagging packets causes unpredictable changes
in routing behavior and destroys the message payload[5].

2.1 Encryption and Decryption of Minx Packets

Minx employs three cryptographic primitives to create packets containing
messages of fixed length. These are: RSA encryption [14], a symmetric “error
propagating” encryption scheme EP , and a symmetric “bidirectional error prop-
agating” encryption scheme biEP . The key properties of these schemes is that
changing bit i of the ciphertext causes pseudorandom plaintext for bits j > i
when decrypting under EP and for all bits when decrypting under biEP . Danezis
and Laurie suggest using AES in Infinite Garble Extension mode [8] for EP , and
setting biEP (x) = EP (reverse(EP (x))). We will let � denote the length of RSA
public keys, and κ the length of symmetric keys used in Minx; Danezis and Laurie
recommend using � = 1024 and κ = 80.

The Minx packet format implements a simple layered encryption scheme. The
layer intended for a node N contains three components: a session key k, a field
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Fig. 1. Minx Packet Format

indicating the packet’s next hop, and a payload (the next inner layer) encrypted
using EP and session key k. Additionally, the first �/8 bytes–including the session
key, next-hop field, and a portion of the encrypted payload–are RSA encrypted
using node N ’s public key. This is diagrammed in Figure 1. The innermost layer
is encoded slightly differently; the next-hop field is set to a special final value to
indicate that node N is the intended destination, and the payload (the actual
message) is encrypted with the biEP block cipher instead of the EP block cipher.

A Minx packet is created as follows. Suppose sender S wishes to send message
M anonymously through n − 1 hops to a receiver at mix node Nn. S chooses
n − 1 intermediate mix nodes N1 . . . Nn−1 in the Minx network and n random
session keys, k1 . . . kn. Each mix node Ni has an RSA public key associated with
it. Let encryption of a data block D using public key of router Ni be represented
as RSANi(D), and the encryption of a data block D with EP or biEP keyed
with ki be represented as EPki (D) and biEPki(D) respectively. Similarly, let
RSA−1

Ni
(D), EP−1

ki
(D), and biEP−1

ki
(D) be the respective decryption operations.

Let | represent concatenation of bit strings, and let M [i, j] denote the byte range
from byte i to byte j (inclusive) of bit string M . Finally, let J(l) represent a
random string of bits of length l. Figure 2 shows the procedure for a sender to
encode a Minx packet as well as the procedure for a Minx node to decode and
process a Minx packet. Note that Pi and Ci represent the packet intended for
node Ni before and after the header is encrypted with node Ni’s public key. The
sender S thus sends the resulting packet C1 to node N1.

When a Minx node receives a packet Cj the decoding process is quite simple.
It decodes the first �/8 bytes of Cj and extracts the session key kj , the next hop
field, and the encrypted payload. To prevent replay attacks the node maintains
a table of observed session key hashes, and drops the offending packets. If the
next-hop field contains the special final value, the packet has reached it’s final
destination so the node decrypts the payload (with biEP−1) and processes the
enclosed message accordingly. Otherwise the field indicates the next-hop desti-
nation, so it decrypts the payload (with EP−1), pads the resulting packet up to
the proper size, and forwards it on to its next stop.

2.2 Reply Packets

A packet sender S can choose to include information allowing receiver R to reply
without revealing S′s identity. A sender wishing to allow replies creates a special
minx packet called a reply block rbS to allow receiver R to send a message to
sender S without knowing the identity of S. The reply block rbS and the first
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Minx Packet Encoding Minx Packet Decoding
inputs: inputs:

message M packet Cj

node IDs N1 . . . Nn node ID Nj

session keys k1 . . . kn procedure:

procedure: kj | Nj+1 | encC =
Pn = kn | final | biEPkn(M) RSA−1

Nj
(Cj [0, �

8 − 1]) | Cj [
�
8 , −]

For i from n − 1 to 1 : Check and store Hid(kj).
Pi = ki | Ni+1 | EPki(Ci+1) if Nj+1 is not final:
Ci = RSANi(Pi[0, �

8 − 1]) | Pi[
�
8 , −] Cj+1 = EP −1

kj
(encC)

Pad C1 up to a set size: C1 = C1 | Jl Send padded message Cj+1|Jl to Nj+1

Return C1 else:
Process message biEP −1

kj
(encC[0, (l − 1)])

Fig. 2. On the left is the procedure for encode a message M in a Minx packet that will
travel the path N1 . . . Nn. On the right is the procedure for a Minx node Nj to decode
and process an incoming packet.

node in the path specified by rbS are included in the anonymous message sent
to the receiver. The receiver can create a reply by encrypting a message M ′ with
a globally fixed key λ and prefixing the encrypted message with the packet rbS .
The ciphertext rbS |biEPλ(M ′)|Jl is then sent to the specified first node.

As the reply block routes the packet through the network back to S, the
appended message M ′ gains layers of encryption. In order for S to recover this
appended message, she includes some extra information – the path and session
keys – inside of the original reply block rbS .

2.3 Minx’s Claimed Security Properties

The stated goal of Minx is to provide the same security properties as Mixminion.
These security goals are:

– Anonymity given the presence of a global passive adversary which controls
all but one node on the message path and can perform active attacks against
honest mix servers.

– The ability to generate secure anonymous replies.
– Mix servers, given a message, cannot determine either the total length the

message will be routed or their position along the message’s path.
– Tagging attacks are totally ineffective. Tagging attacks are defined as attacks

which modify a correct, encrypted message in an attempt to recognize the
result of the modifications at a later point during routing.

Of particular note is the claim that tagging attacks are ineffective. This claim
is based on the assumption that the cryptographic transformations above, when
used to decrypt tagged ciphertext, decrypt to something unpredictable and thus
do not allow useful information to be gained. In the next section, we show how an
active attack that carefully submits many modified messages can exploit Minx’s
use of “vanilla RSA” to recover plaintexts.
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3 Attack on Minx

As mentioned previously, Minx does not meet its stated security goals. Specifi-
cally, it is vulnerable to a chosen ciphertext attack that allows an active adver-
sary to successively unwrap the layers of encryption from a packet and eventually
extract the enclosed message using a bit oracle constructed from the next-hop
portion of the packet header.

Our attack relies on recent theoretical work by H̊astad and N̊aslund [12].
The main theorem from this work is that all individual plaintext bits of an
RSA ciphertext are hard core bits: unless RSA can be inverted in probabilistic
polynomial time, no single bit of the plaintext can be predicted in polynomial
time with non-negligible advantage.

The theorem is proven in the contrapositive, by showing that an adversary
can decrypt an RSA ciphertext if they have the ability to predict a single bit of
an arbitrary RSA plaintext when given the corresponding RSA ciphertext. More
formally, consider an oracle Oi, which when given RSA ciphertext E(x) outputs
xi, the ith bit of x, with probablity 1

2 + 1
p(�) , for some polynomial p. H̊astad and

N̊aslund describe a probabilistic polynomial time algorithm that uses this oracle
O to decrypt an RSA ciphertext. The description of the algorithm is outside the
scope of this paper, but we note that it requires only a polynomial number of
queries to O on randomly sampled ciphertexts, and runs in expected time O(�13)
where � is the bit-length of the RSA modulus.

3.1 Constructing the Bit Oracle

Generally, obtaining an RSA bit oracle is difficult. However, the current design
of Minx allows an adversary to construct such an oracle. As described in Section
2.1, when a Minx node receives a packet, it decrypts the first �

8 bytes using it’s
RSA private key and then examines the session key and next-hop fields. If the
next-hop field specifies another node ID (that is, it doesn’t contain the special
value final), the Minx node uses the session key to decrypt the rest of the packet
and forwards it to the specified next-hop destination.

Consider a Minx node that performs no mixing, so that packets are output
sequentially in the order they are received. An adversary observing the node’s
traffic can watch a packet Pj enter and watch the processed packet Pj+1 leave
the node. Since the adversary can observe the destination of Pj+1, she knows the
corresponding bits of the next-hop field that were in the RSA encrypted header
of Pj . This gives a simple construction of a predictor for any bit in the next-
hop field of the header. Specifically, given an RSA ciphertext C the adversary
implements the oracle O as follows:

1. Create a packet P with C as the first �
8 bytes and arbitrary bits for the

remainder of the packet (so C is the encrypted header).
2. Send the packet P through the target Minx node.
3. Observe the outgoing packet and record its next-hop destination.
4. Look up the value that corresponds to the next-hop destination.
5. Return the desired bit of the next-hop field.
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It is easy to see that with no mixing, the oracle’s bit predictions have 100%
accuracy. Since the security of Minx is intended to hold regardless of mixing
strategy, this will already be sufficient to prove that no asymptotic security
proof is possible.

However, even if a Minx node uses a mixing strategy it is still possible to
construct a bit oracle, with slightly reduced accuracy. Suppose that for a given
mixing strategy, the adversary can determine for any input packet P , a set S of
k packets such S contains the decryption of P with probability at least 1 − ρ.
To predict a next-hop bit in this case, the adversary can submit a packet P , and
observe the set S of k packets and their next-hop destinations. By uniformly
picking a packet from S and predicting the appropriate bit of its next-hop field,
the adversary can predict the desired bit with probability at least 1

2 + 1
2k (1− ρ).

Thus this implementation of the bit oracle meets the theorem’s requirements.

3.2 Attack Walkthrough

To follow the full attack, consider a target Minx packet P1 heading towards
next-hop Minx node N1. The adversary is interested in decoding this packet to
determine the enclosed message and its intended destination. Recall that the
first �

8 bytes of the packet P1 consist of the header encrypted with N1’s RSA
public key. The adversary proceeds to run H̊astad and N̊aslund’s algorithm to
extract the unencrypted header of packet P1. Whenever the algorithm invokes
a call to the bit oracle, the adversary follows the implementation of the bit
oracle described above. After successfully running the algorithm, the adversary
will have obtained the unencrypted header of packet P1. From the header the
adversary extracts the session key and next-hop value. If the next-hop value
indicates that N1 was the final node in the path, the adversary uses the session
key to decrypt the rest of the packet and extracts the original message. Otherwise
the next-hop value indicates the next node N2, and the session key is used to
recover the next Minx packet P2. The adversary then repeats the procedure for
packet P2 with destination N2. Eventually the adversary will reach the last node
in the path and extract the plaintext message and its destination.

In this attack, Minx nodes could occasionally drop packets that contain a
previously used session key. Since the oracle queries are chosen from an unbiased
pairwise-independent distribution, the probability of this event is negligible in
the session key length.

Although this attack is not truly practical, requiring an expected time of
O(�13) for each hop1, it is sufficient to show that there cannot be a proof of
security for Minx in the standard cryptographic security model. Furthermore, it
is interesting to note that Minx is somewhat fragile in its security against more
practical attacks: if the next-hop portion of the header had been in the most
significant bits (before the session key, rather than after it), a simple modification

1 However, it is interesting to note that in some special cases, H̊astad and N̊aslund’s
algorithm actually reveals a node’s RSA private key, thus allowing the adversary to
decrypt all messages passing through the node.
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of Bleichenbacher’s “million message attack” [2] could be used to recover packet
plaintexts with only O(�) oracle queries for RSA moduli of length �.

3.3 Insecurity of Reply Packets

We note that, in addition to being subject to the same attacks as regular packets,
Minx reply packets are subject to an additional attack that distinguishes them
from regular packets at the first hop. As outlined in Section 2.2, reply packets
are constructed by appending the encryption, under the fixed key λ, of a message
M ′ to a reply packet rbS , creating rbS |Eλ(M ′)|J . As rbS is of fixed size and λ is
fixed and public, a global passive adversary (or dishonest first-hop mix server)
can simply attempt to decrypt the appropriate portion of any packet using key
λ. If the result is recognizable as plaintext, the packet corresponds to the first
hop of a reply message.

4 Fixing Minx

In this section we propose modifications to Minx. Our attack is possible because
routing packets leak information about bits in the packet header plaintext. Our
proposed modification is to use a cryptographically secure hash function to ob-
scure the link between the observed behavior and the packet header information,
thus removing the bit oracle present in the original Minx specification.

4.1 Details

In our modification, the session key and next-hop field are no longer explicitly
encoded in the packet header. When a node processes an incoming packet it
computes the hash of the unencrypted header and extracts the session key and
next hop from the hash output. The modifications appear in Figure 3. Note
that previously only repeated session keys were disallowed, but we now disallow
repeated headers. Also note that previously part of the payload was contained in
the RSA encrypted portion, but now the payload starts after the �

8 byte header.
The former is done to prevent replay attacks, and the latter to simplify our
proof.

The sender is now required to find random headers whose hash indicates the
correct next-hop (or final). However, this is a minimal burden on the sender as
the next-hop field is only 1 byte, and thus the expected number of headers to try
before success is only 28 = 256. In an implementation headers could be pulled
from a precomputed list, thus reducing the average cost of creating a packet.
Furthermore, if the sender does not care about which intermediate nodes are
used, they only have to check that the final next-hop value N ′

n indicates the
correct destination and that none of the intermediate values next-hop values N ′

i

encode the special final value. Also note that the sender no longer explicitly
generates session keys, as they are randomly chosen through use of the secure
hash function.
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Modified Packet Encoding Modified Packet Decoding
inputs: inputs:

message M packet Cj

node IDs N1 . . . Nn node ID Nj

procedure: procedure:

do Header = Cj [0, �
8 − 1]

Headern = random �
8 bytes if Header has been seen before

(kn|N ′
n) = H(Headern) drop the packet

until N ′
n = final else

Cn = RSANn(Headern)| biEPkn (M) cache Header
For j from n − 1 to 1 : Pay = Cj [

�
8 , −]

do (kj |Nj+1) = H(RSA−1
Nj

(Header))

Headerj = random �
8 bytes if Nj+1 is not final:

(kj |N ′
j+1) = H(Headerj) Cj+1 = EP−1

kj
(Pay)

until N ′
j+1 = Nj+1 Send padded message Cj+1|J to Nj+1

Cj = RSANj (Headerj)| EPkj (Cj+1) else:
Pad C1 up to a set size: C1 = C1|Jl Process message biEP−1

kj
(Pay[0, (l − 1)])

Fig. 3. On the left is our modified procedure for encode a message M in a Minx packet
that will travel the path N1 . . . Nn. On the right is our modified procedure for a Minx
node Nj to decode and process an incoming packet.

Form Reply Block(SK, N1 . . . Nn, name, IV )

do
headern = random
(kn|nextHopn) = H(headern)

until nextHop = REPLY
for j = n − 1 to 1

do
headerj = random
(kj |nextHopj) = H(headerj)

until nextHopj = Nj

secretKey = H ′(SK|IV )
M = name | IV | EPH′(SK|IV )(name |Nym | n | header1 |...| headern)
On =RSANn(headern) | biEPkn(M)
for j = n − 1 to 1

Oj =RSANj (headerj)| EPkj (Oj+1)
pad O1 up to size L′ (smaller than normal packet size)
return O1, secretKey

Fig. 4. Reply Block formation

4.2 Reply Packets

As described in Section 3.3, the use of a globally fixed key reduces the security
of Minx reply packets. If we have the anonymous sender S send a secret key
secretKey along with the reply block rbS and first node destination, then the
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receiver can use secretKey in place of the fixed key λ. A reply message M ′ can
be created by appending EsecretKey(M ′) to the reply block.

Recall that our modified packet format no longer uses sender specified session
keys, and these session keys need to be stored in the reply block so that the
sender S can later recover R’s reply message. Thus creating the reply block
requires precomputing all the headers so that they can be included in the extra
information S sends to herself. The creation of a reply block is shown in Figure 4.

5 Formalization of Minx

In order to prove our modification to Minx is secure, we must first formally
define what it means for an onion routing encryption protocol to be “secure.”
Our formal definition of security uses a slightly modified version of the onion
routing security framework provided by Camenisch and Lysyanskaya [3]. Note
that in both this section and the subsequent proof section our discussion is in
terms of “onions” and “routers” as used by Camenisch and Lysyanskaya; these
correspond exactly to “packets” and “nodes” when discussing Minx.

Camenisch and Lysyanskaya syntactically define an onion routing scheme to
consist of two functions, ProcOnion and FormOnion. When given a private
key SK, an onion Oi and a router Ni, ProcOnion decrypts Oi and returns
the next router in the path Ni+1 and onion Oi+1 to be sent to that router.
FormOnion(m, (N1, . . . , Nn+1), (PK1, . . . , PKn+1)) creates an onion contain-
ing message m and path N1, . . . , Nn+1, using the public keys PK1, . . . , PKn+1.

Camenisch and Lysyanskaya’s framework for onion security is defined in the
adversary and challenger game format. The challenger picks a challenge router
and public key PK and gives it to the adversary A, but keeps the corresponding
private key secret. The adversary then picks an path index j, sets PKj = PK,
picks n other routers and generates public keys PK1, . . . , PKj−1, PKj+1, . . . ,
PKn+1 (and corresponding private keys). The adversary then submits to the
challenger a message m, the index j, the public keys PK1, . . . , PKn+1. The chal-
lenger then forms an onion either containing message m and path PK1, . . . , PKj ,
. . . , PKn+1 as requested by the adversary, or a random message and path PK1,
. . . , PKj. The resulting outer onion O1 is then given to A. The adversary can
then request to have any number of onions O′ �= Oj decrypted by the challenge
router using a procOnion oracle and can observe the results (A knows all the
other private keys so it doesn’t need an oracle for the other routers). Thus with-
out knowing the private key for PKj , and not being able to process the critical
onion Oj , A’s goal is to distinguish which of the two possible onions it was given
with nonnegligible advantage over random guessing.

To accommodate Minx in this framework and to simplify our proof of security
presented later, we make two simple changes to the framework.

First, in addition to disallowing A from submitting an onion identical to Oj ,
we add a further restriction and forbid the adversary from submitting any onions
with the same header as Oj . This is due to the fact that in Minx modifying the
“tail” of a packet doesn’t the next-hop information in the current header (though
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it corrupts the message and the rest of the path). Thus in the context of Minx
an adversary could submit to the challenge router an onion O′

j �= Oj but with
the same header and easily determine if the challenge router was the last stop.
Also this formal restriction is consistent with Minx’s policy of dropping packets
with previously used headers.

Second, we drop the requirement in [3] that A cannot “re-wrap” Oj . Consider
the specified path of the challenge onion, and let Nj−1 be the router preceding
the challenge router Nj . In Camenisch and Lysyanskaya’s framework an adver-
sary instantly “wins” the game (thus proving the protocol insecure) if she can
construct a different onion O′ that goes through a different router N ′ �= Nj−1 yet
when processed yields the onion O′′ = Oj . This is trivial to perform in the con-
text of Minx - just encrypt Oj with a new header using a different node’s public
RSA key. Again, since Minx nodes are stateful and drop duplicate headers, this
event does not correspond to an attack in the Minx setting.

Our modified definition of security is expressed formally as follows:

1. Adversary A receives a (randomly chosen) challenge public key PK and
router name N .

2. A can send any number of onions Oi of her choosing to the challenger and
observe the output (Ni+1, Oi+1) ← ProcOnion(SKi, Oi, Ni).

3. A submits a message m, path N1...Nn+1, an index j in the path, and pub-
lic/secret keys for all routers 1 ≤ i ≤ n + 1, i �= j. The challenger randomly
selects b ∈ {0, 1}.

If b = 0, the challenger computes:
(O1, . . . , On+1) ← FormOnion(m, (N1, . . . , Nn+1), (PK1, . . . , PKn+1))

If b = 1, the challenger randomly selects r ← {0, 1}|m| and computes:
(O1, . . . , Oj) ← FormOnion(r, (N1, . . . , Nj), (PK1, . . . , PKj))

O1 is given to adversary A.

4. A can then send any onion Oi whose header differs from Oj and obtain
ProcOnion(SKi, Oi, Ni).

5. A outputs a guess b̂A, for the bit b.

We say that an onion routing scheme is secure if for every polynomial time (in the
security parameter, e.g. the length of the public key) adversary A, Pr[b̂A = b]− 1

2
is negligible in the security parameter.

Note that as is the case with Minx, Camenisch and Lysyanskaya’s framework
does not consider the mixing strategy of the onion routers. This allows analysis
of the cryptographic aspects of onion routing independently from the mixing
strategies used. Under this framework it is easy to see that Minx does not meet
this definition of security, since the adversary A can follow the attack described
in Section 3 to perfectly distinguish between the b = 0 and b = 1 cases.

6 Security Proof

In this section we formally prove the security of our modified version of Minx.
Recall the game based definition of security in Section 5, in which the adversary
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is required to try to guess the value of b. If no polynomial time adversary can
get a non-negligible advantage over the random guessing strategy, the protocol
is considered secure. Our proof is in the random oracle model [1] and relies on
two cryptographic assumptions. First, we assume RSA is a trapdoor one-way
permutation: given a randomly chosen RSA modulus N , and EN (x) for a ran-
domly chosen x ∈ {0, 1}�log2 N�, no polynomial time algorithm can output x
with non-negligible probability. Second, we assume that EP and biEP are im-
plemented using a block cipher (such as AES) in IGE mode, as Danezis and
Laurie suggest[5], and that the underlying block cipher is a pseudorandom per-
mutation: given oracle access to a bijection, no polynomial time algorithm can
distinguish between an oracle for a uniformly chosen bijection and an oracle for
the block cipher with a randomly chosen key. This assumption implies, in par-
ticular, that the ciphertexts output by EP and biEP , when a key is used only
once, are indistinguishable from random bitstrings of the same length [8].

6.1 Outline of Hybrids

Our security proof is similar to standard hybrid arguments, such as appear
in [10]. We consider the probability that the adversary outputs 1 in a sequence
of four hybrid games:

– In Game 0 the challenger always follows the b = 0 case from the original
game, that is, Oj = RSAj(Headerj)|EP (Oj+1), with the next-hop portion
of H(Headerj) indicating router Nj+1 as the next hop.

– In Game 1 the challenger acts the same as in Game 0 except when forming
Oj . First the challenger forms Oj = RSAj(Headerj)|EP (Oj+1) as he would
in Game 0, but then replaces the encrypted header RSAj(Headerj) with
random bits to yield Oj = random|EP (Oj+1). The rest of the outer layers
are formed as normal.

– In Game 2 the challenger acts the same as in Game 0 except when forming
Oj . Instead of forming Oj as he would in Game 0, the challenger sets all the
bits of Oj to be random yielding Oj = random. The rest of the outer layers
are formed as normal.

– In Game 3 the challenger follows the b = 1 case, except when forming Oj

(note that Oj is the innermost onion in the b = 1 case). The challenger first
forms Oj as he would in the b = 1 case, so Oj = RSAj(Headerj)|BiEP (r)
where the next-hop field of H(Headerj) encodes the special Final value. The
challenger then keeps the same encrypted header, but replaces the payload
portion, BiEP (r), with random bits to yield Oj = RSAj(Headerj)|random.

– In Game 4 the challenger always follows the b = 1 case, that is, Oj =
RSAj(Headerj)|BiEP (r) where the next-hop field of H(Headerj) indicates
Final.

We argue that the difference in the probabilities that the adversary outputs 1
in each adjacent pair of games must be negligible. Then by the triangle inequality,
we will have that the difference in probabilities between Game 0 and Game 4
must also be negligible.
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The adversary, knowing all private keys except the jth private key, can always
decrypt O1 to get O2, and then decrypt O2 to get O3, etc., until obtaining Oj .
Additionally, in all of the games O1...Oj−1 contain no differences, so in essence
the adversary is attempting to distinguish between the two cases for Oj .

6.2 Proof of Indistinguishability

We first provide a lemma that ProcOnion is not useful to an adversary. One might
expect calling ProcOnion would give the adversary an advantage in distinguish-
ing the games, as ProcOnion has access to the jth private key. However, since
all information returned by ProcOnion is a function of the hash function H , we
can simulate the information an adversary would gain from calls to ProcOnion
by replacing H with a random oracle and appropriately responding to its queries
to H .

Lemma 1. An adversary A cannot distinguish between normal outputs from
ProcOnion and a third party T simulating ProcOnion and the Oracle. Thus, A
gains no information from ProcOnion.

Proof. T simulates ProcOnion and the Oracle by maintaining a table with three
columns: x, y, and h, where x is a header plaintext, y = E(x) is the corresponding
header ciphertext, and h is our Oracle output for x. A row will always contain a
value in the ciphertext and Oracle output columns, but the plaintext value may
be empty/unknown.

When A makes an Oracle query x, T calculates y = E(x) and checks if
ciphertext y is in the table. If so he returns the corresponding Oracle output
listed in the table. Otherwise T returns a random value r, and places x, y, r in
the table. When A queries ProcOnion with an onion O consisting of header
ciphertext y and encrypted payload d, T checks if ciphertext y is already in the
table. If so, T looks at the Oracle output h = nextHop||sesKey. T then decrypts
d with sesKey and returns the output along with nextHop. Otherwise T picks
a random value r and makes a table entry with an empty plaintext, y as the
ciphertext, and r as the Oracle output. T then takes h = nextHop||sesKey,
decrypts d with sesKey and returns the output along with nextHop.

Since A has no information about the value of the hash at the plaintext unless
he has already queried the oracle there, and we enforce consistency in these cases,
the probability of any outcome with our simulation technique is identical to the
probability with a random oracle and a correct ProcOnion oracle.

We now show that our steps are indistinguishable, beginning with Games 0 and
1. Let Pri[z] equal the probability of event z occurring in game i. Suppose that
A can distinguish between Game 0 and Game 1 with advantage ε = Pr0[b̂A =
1] − Pr1[b̂A = 1]. Using A, we construct an algorithm M(y, PK) that decrypts
RSA ciphertext y = E(x) for a uniform x given the corresponding public key
PK. M will simulate A ’s calls to ProcOnion and the Random Oracle using a
table as explained in the previous lemma. M runs as shown in Figure 5.
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M(y,PK)

m, path ← A(PK)
o ← y || random payload
b ← A(o , m, path, public key)
if table contains y in ciphertext column

return corresponding plaintext
else

return random x mod PK

Fig. 5. M distinguishing algorithm

Note that if the ciphertext y shows up in the table, it must be as a result
of querying the Random Oracle with a value x such that y = E(x), as A is
forbidden from querying ProcOnion with an onion that has ciphertext header
y. Let Q be the event that A queries the Random Oracle on a value x such
that y = E(x). Note that when Q does not occur, there is no difference in A’s
view of the two games: without querying at x, there is no correlation between
the encrypted header and the string EP (Oj+1). Thus we have Pr0[b̂A = b |
Q] = Pr1[b̂A = b | Q] for any bit b. Also note that regardless of what A does,
Pr1[b̂A = 1|Q] − Pr0[b̂A = 1|Q] ≤ 1. Therefore:

ε = Pr1[b̂A = 1] − Pr0[b̂A = 1]

= Pr1[b̂A = 1|Q] · Pr[Q] + Pr1[b̂A = 1|Q] · Pr[Q]

−
(
Pr0[b̂A = 1|Q] · Pr[Q] + Pr0[b̂A = 1|Q] · Pr[Q]

)

= Pr[Q] · (Pr1[b̂A = 1|Q] − Pr0[b̂A = 1|Q])
≤ Pr[Q] .

Since M succeeds with probability exactly that of Q and runs in time propor-
tional to the running time of A, and it is assumed that RSA cannot be bro-
ken with non-negligible probability, A′s advantage must be negligible, and thus
Games 0 and 1 are indistinguishable.

Now we argue that Games 1 and 2 are indistinguishable. Suppose that for some
adversary A, Pr2[b̂A = 1] − Pr1[b̂A = 1] is non-negligible. Then this adversary
can be used to create an algorithm M to distinguish between the symmetric
encryption of a chosen message (under a random, secret key) and random bits,
leading to an attack on the block cipher. M simulates the challenger in games 1
and 2, and invokes the adversary A up until the challenge message is prepared. M
prepares onion Oj+1 as the challenger in games 1 and 2 does, and then requests
a symmetric-scheme challenge-string that is either the symmetric encryption
of Oj+1 under an unknown secret key or a string of random bits. In either
case, M prepends a random header to this string and gives it to A. In case the
symmetric-scheme adversary received random bits, he outputs 1 with probability
Pr2[b̂A = 1], and otherwise he outputs 1 with probability Pr1[b̂A = 1]. Since
we assumed that the symmetric schemes EP and biEP are implemented in a
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manner that makes ciphertexts (under a random key) indistinguishable from
random bits, Games 1 and 2 are indistinguishable.

The transition between Games 2 and 3 is similar to the transition between
Games 0 and 1. The only difference between Game 2 and Game 3 is the header
of Oj - Game 2 has a random header and Game 3 has a meaningful header.
As in the first transition, an adversary that could distinguish between Games
2 and 3 could decrypt an RSA ciphertext using only the public key. Under the
assumption that this is impossible for a polynomially limited adversary, Games
2 and 3 are indistinguishable.

Finally, we argue that Games 3 and 4 are in fact identically distributed. This
follows from the fact that with any fixed bijection, biEP (r) for random bits r
is uniformly distributed: each block is formed by applying a fixed bijection to a
uniformly random string. Thus Pr4[b̂A = 1] = Pr4[b̂A = 1].

Thus we have that for each i ∈ {0, 1, 2, 3}, εi = Pri+1[b̂A = 1] − Pri[b̂A = 1]
is negligible. Since Pr4[b̂A = 1] − Pr1[b̂A = 1] =

∑
i≤3 εi, and Pr[b̂A = b] =

1
2 + 1

2 (Pr4[b̂A = 1] − Pr0[b̂A = 1]), we have that any A must have negligible
advantage against our modified version of Minx.

6.3 Reply Packets

In order to prove that reply packets are secure, we must first define what security
property we want from them. Recall that reply onions under Minx are designed
to be indistinguishable from standard onions. A natural question is to ask to
whom they should be indistinguishable: the sender can clearly differentiate the
reply onion until its first hop. And the receiver, if he retains the secret keys,
can do so at any hop (e.g. by looking for the encrypted headers). While it is
an interesting question whether a reply-onion scheme exists that avoids these
issues, we do not address it in this paper. (Nor does the original Minx design)

We define security by a simple game: the challenger picks public keys PK1, . . . ,
PKn and gives them to the adversary, who then picks a message M that could fit
in a reply block. The challenger then flips a coin b ∈ {0, 1}; if b = 0, he encrypts
M in a standard onion, and if b = 1, he encrypts M in a reply onion. The resulting
onion is given to the adversary, who then outputs a guess b̂A. A reply onion scheme
is secure if for every polynomial time adversary, Pr[b̂A = b] − 1

2 is negligible.
Under this definition, it should be clear that our modified reply onions are se-

cure: the only difference between the cases b = 0 and b = 1 is that for a reply
onion, the “ciphertext” after the final header E(headern) is an encryption under
EP of a “short” string followed by an encryption under EP of M using a different
key; whereas for a “standard” onion this ciphertext is an encryption under EP of
M followed by padding. Since ciphertexts produced by EP are indistinguishable
from random bits, the triangle inequality implies the security of our construction.

7 Conclusions and Future Work

Our work here represents two contributions of note. First, we have described a
novel attack which demonstrates how leaking one bit in an encrypted message
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can have significant security ramifications. We hope that our demonstration of
this will influence the design of future protocols. Second, we have described a
modification to Minx that prevents this attack, and have provided a formal proof
that our solution meets the protocol’s original security goals.

One shortcoming of our suggested modification is that it wastes message space
by appending a full RSA modulus worth of random bits for every layer of en-
cryption; Minx avoids this by encrypting the key, the next hop, and a portion
of the next encrypted onion in the RSA header. The design of a scheme that
reduces this overhead is an interesting question for future research.
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Abstract. In this paper we explore the tradeoffs between security and
performance in anonymity networks such as Tor. Using probability of
path compromise as a measure of security, we explore the behaviour of
various path selection algorithms with a Tor path simulator. We demon-
strate that assumptions about the relative expense of IP addresses and
cheapness of bandwidth break down if attackers are allowed to purchase
access to botnets, giving plentiful IP addresses, but each with relatively
poor symmetric bandwidth. We further propose that the expected la-
tency of data sent through a network is a useful performance metric,
show how it may be calculated, and demonstrate the counter-intuitive
result that Tor’s current path selection scheme, designed for performance,
both performs well and is good for anonymity in the presence of a botnet-
based adversary.

1 Introduction

The Tor network [1] is the most widely deployed anonymous communication
system, whose estimated 250 000 users include companies, human rights workers
and law enforcement. The network’s security is therefore critical for the safety
and commercial concerns of its users. In common with other deployed low-latency
anonymity networks, Tor is vulnerable to an attacker who is able to monitor a
user’s communication both as it enters and leaves the system. Through traffic
analysis, the attacker can use timing characteristics to confirm which incoming
connection corresponds to an outgoing one, and so discover the user behaviour
Tor seeks to hide. It is thus important to understand how the routing of connec-
tions through the Tor network affects the risk of their compromise.

A frequently stated problem with Tor is that it significantly slows down web
browsing speed. This is, in part, a consequence of the volunteer-operated na-
ture of servers – many are on slow connections or shared with other activity.
It is therefore important to make the best use of the limited capacity available,
when selecting the path over which a user’s traffic will be routed through the
Tor network. In order to prevent an attacker manipulating path selection, the
servers on each path are selected by the initiator. For best performance, the path
selection algorithm must therefore fairly distribute connections based on server
capacity, using only information known to the initiator, while being difficult for
an adversary to game.

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 115–132, 2008.
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In this paper we present an analysis of path selection algorithms for Tor, in-
cluding the currently used ones and proposed improvements. We consider their
anonymity and performance consequences, based on simulations and models
driven by data collected from the deployed Tor network.

In contrast to previous work, we examine a more realistic threat model, in
which attackers are limited not only by number of nodes they control, but also
their bandwidth capacity. We find that by introducing this generalisation the
relative security of different path selection algorithms is substantially changed.

Previous work has shown that alternative algorithms have improved perfor-
mance, when only the client tested is modified. We show that, by modelling a
network where the new algorithm is fully deployed, performance substantially
deviates from previous predictions.

The remainder of the paper is structured as follows: Section 2 introduces
the basic operation of Tor, and the threat model we will consider; Section 3
discusses related work on alternative path selection algorithms, metrics for eval-
uating their anonymity, and attacks which exploit their weaknesses; Section 4
describes, in detail, how the existing Tor path selection algorithm operates; Sec-
tion 5 introduces our metric for path selection security and presents simulation
results; finally, Section 6 evaluates the performance of path selection algorithms,
when all clients are assumed to be using the new scheme.

2 Design of Tor

The Tor anonymity network, the latest generation of the Onion Routing project,
aims to anonymise TCP traffic while maintaining a low enough latency to be us-
able for interactive protocols such as web browsing. When the Tor server software
on a node (an onion router) is first configured, it generates a public/private key
pair and sends the public half and other routing details to the directory author-
ities, in the form of a router descriptor. The directory authorities communicate
between themselves and establish the subset of onion routers which they are all
aware of and sign the resulting consensus directory.

Users install the Tor client software on their computer and configure their ap-
plications to use Tor as a SOCKS proxy (an onion proxy). On receiving a connec-
tion, the client establishes the desired destination and selects a path consisting
of three Tor nodes listed in the consensus directory (which was downloaded from
a directory authority or a mirror). The client then connects to each node on the
path (a hop) in turn and builds an encrypted tunnel secured by a session key
established through an authenticated Diffie-Hellman exchange. Each connection
is made through the previous tunnel, so an external observer can only see the
connection to the first hop (the entry node).

The client requests that the last hop (the exit node) connects to the desired
destination, then splits data to be sent into 512 byte cells, encrypts them under
all session keys for the path, and sends them to the entry node. Each node on
the path removes one layer of encryption, establishes which is the next hop, and
sends the cell on. Once the cell reaches the exit node, the final layer of encryption
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is removed and the data sent to the destination server. Replies from the server
follow the reverse process.

The full details of the procedure are covered in the Tor specification [2], but
all that is required to understand for the remainder of the paper is that an
encrypted tunnel can be built through the Tor network. Our focus will be on
how the onion proxy selects the onion router nodes for each path. Section 4 will
describe the path selection algorithms in detail, but we will first discuss what
we assume about our attacker’s goals and abilities.

2.1 Threat Model

Tor imposes no restrictions on who can join the network, which has led to the
rapid growth of network capacity, but increases the risk that some nodes in the
network are malicious. We assume that an attacker’s goal is to link senders with
receivers – that is, to de-anonymise the endpoints of traffic. A global-passive
adversary, conventionally assumed in the study of high-latency anonymity net-
works, can break the anonymity properties of currently deployed low-latency
systems by correlating traffic patterns; however in many situations such a pow-
erful attacker is unrealistic. Instead, we will consider a weaker attacker who is
only capable of monitoring traffic on nodes he has injected into the network.

Tor does not intentionally delay messages, or introduce dummy traffic other
than limited message padding, so traffic patterns remain almost unchanged as
they pass through the network. For this reason, it was assumed and subsequently
demonstrated [3,4] that by observing both ends of a connection, timing patterns
are enough to confirm a suspected link between sender and receiver. This attack
has also been shown to work even if only a small proportion (e.g. 1 in 2 000)
of packets can be observed [5]. We will thus assume that a connection is de-
anonymised if both the first and last hop on the path are malicious.

In contrast to Tor, JAP [6] requires that operators promise not to engage in
malicious behaviour before being admitted. JAP is also a cascade system, in
which traffic from all users flow over the same path. If an attacker were able to
compromise or monitor the single entry and exit nodes for a given cascade then
all of its users could be de-anonymised. Our threat model is only appropriate
to a network where data may follow arbitrary paths (a free route system), and
where nodes may freely join and leave. We will not further discuss JAP-style
networks in this paper.

3 Related Work

3.1 Path Selection Algorithms for Tor

At a high level, Tor’s path selection algorithm works in two stages. For each
hop on the path, Tor first builds a list of nodes which meet requirements (such
as reachability and stability) and second, picks a random node according to a
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weighting scheme. When the design document [1] was written, Tor uniformly
weighted random node selection. This was initially adequate, but as heterogene-
ity of node bandwidth capabilities increased, path selection was changed to take
into account bandwidth capacity of nodes. The basic algorithm is described by
Bauer et al. [3], and our updated description is in Section 4.

Several proposals from the literature, on improving the Tor selection algo-
rithm, have already been applied to the mainline Tor distribution. These include
guard nodes [4] and bandwidth/uptime caps [3]. One further notable paper is
by Snader and Borisov [7], in which two proposals are made. Firstly, they sug-
gest that bandwidth estimates used for making routing decisions be measured
by opportunistically sampling actual throughput, rather than nodes reporting
their own capacity. Secondly, they propose a tunable algorithm for selecting
nodes, which weights faster nodes more heavily, depending on user preferences
for anonymity versus performance. In this paper we will primarily discuss the
latter proposal, but will return to the former in Section 5.

While the current Tor path selection algorithm picks nodes with a probability
proportional to their contribution to the total network bandwidth, the Snader
Borisov (S-B) tunable variant only uses advertised node capacity to produce a
rank ordering of nodes. The probability that a particular node will be selected
depends solely on its position within this ordering. More precisely, let the family
of functions fs be defined as:

fs(x) =
1 − 2sx

1 − 2s
(for s �= 0) (1)

f0(x) = x (2)

To select each node, the n candidates are sorted in descending order of band-
width and a number x selected uniformly at random from the interval [0, 1). The
selected node is at index �n × fs(x)�. This is equivalent to selecting a random
number according to the cumulative distribution function (CDF) defined by the
inverse of fs(x).

The value of s is selected by the client according to their preference for faster
nodes. For s = 0, nodes are selected uniformly (intended for users with high
anonymity requirements) but the higher s is, the more will faster nodes be pre-
ferred (for users willing to compromise anonymity for better performance). A
practical upper limit is suggested to be 10, at which with n = 1 000, the highest
ranked node will be selected with probability 6%. By modifying a single client to
adopt the new strategy, the authors experimentally confirm that higher values
of s leads to better performing connections.

A potential problem with parametrised node selection is that if it is possible
to identify a user’s selection preference, their actions can be linked. Snader and
Borisov used a näıve Bayesian classifier in order to establish how accurately a
user’s selection preference could be fingerprinted, based on path selection. They
found that with a training set of 100 000 paths, the probability of correctly
identifying s does not exceed 21%.
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3.2 Metrics for Path Selection

The general consensus from the literature is that the further a path selection
algorithm deviates from uniform weighting of nodes, the lower the anonymity
it provides. Following this intuition, Bauer et al. adopt normalised Shannon
entropy as their definition of anonymity. i.e. if the probability of selecting node
xi is qi, for 1 ≤ i ≤ n, the entropy is:

H = −
n∑

i=1

qi log2 qi (3)

H is maximal at log2(n) when the selection probability is uniform over all nodes,
hence entropy can be normalised, giving a quantity 0 ≤ S ≤ 1 representing how
skewed the probability distribution is:

S =
H

log2(n)
(4)

Entropy and normalised entropy have been used extensively in the study of
high-latency remailers, although over users rather than the paths. For example,
a traffic analysis attack which attempts to establish the sender of a message will
result in a probability distribution over all system users. The users for which
the probability is non-zero make up the anonymity set. One simple metric for
anonymity system security is the size of the anonymity set, but this does not
capture the non-uniformity. For this reason, Danezis and Serjantov [8] proposed
entropy of the anonymity set as the effective size, and Diaz et al. [9] proposed
normalised entropy as the system’s degree of anonymity.

Snader and Borisov have adopted a different metric, the Gini coefficient, but it
also measures the deviation from uniform path selection. The Gini coefficient G
equals the normalised area between the CDF of the probability distribution being
measured, and the uniform CDF. Thus G = 0 represents uniform distribution
over all candidate nodes and G = 1 indicates that the same single node will
always be chosen.

3.3 Attacks on Path Selection

A number of previous publications have taken advantage of Tor’s path selection
algorithm in developing attacks. Øverlier and Syverson [4] showed that, by caus-
ing a client to repeatedly generate fresh paths, an attacker can quickly gain a
high probability of controlling both the first and last hop. This was performed in
the context of hidden services, a feature of Tor which permits the pseudonymous
operation of a server, but the same concepts apply to normal connections.

In order to de-anonymise connections through Tor, an attacker can simply add
enough nodes to maintain a high probability that a connection will start and end
with a malicious node – effectively a Sybil attack [10]. However, a much more
economical variant, proposed by Øverlier and Syverson [4], is to exploit the fact
that load-balancing calculations are based on nodes’ self-reported bandwidth.
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Bauer et al. [3] demonstrated that by artificially inflating bandwidth claims, an
attacker could compromise 46% of connections while controlling only 6 out of the
66 nodes on a private Tor network. In this paper we will expand on the results of
Bauer et al., simulating this attack while varying path selection algorithm. We
also employ node parameters from the real Tor network, rather than a private
one, and use a version of the Tor path selection algorithm adapted to respond
to Bauer’s attack by capping per-node advertised bandwidth.

4 Path Selection in Tor

In this section, we discuss the Tor path selection algorithm and proposed vari-
ants. Because the Tor path selection algorithms have changed over time, we have
chosen a version from late 2007 based on information from a combination of the
Tor path selection specification [11] and the Tor source code.

Tor clients base their path decisions on two types of information: a database
of Tor node properties provided by Tor directory authorities in the consensus di-
rectory, and the specific requirements of the requested connection. We detail the
path selection algorithm in Tor in terms of node properties, path requirements,
and node selection weighting.

4.1 Node Properties

Table 1. Node properties used in selecting paths

Network address The IP address of the node
Node family Administrator-configured equivalence class
Node bandwidth Average, burst, and observed capacity; for most pur-

poses, the average bandwidth is used, capped to
10 MB/s in order to limit bandwidth-based attacks

Node uptime Time since node came online
Node status Whether the node is running or is currently hibernat-

ing and so unwilling to accept connections
Exit policy What, if any, types of exit node use is permitted
Publication timestamp When this information was last received by a directory

authority
Tor version Version of Tor on the node

Table 1 lists the node properties which are reported by nodes to the Tor direc-
tory authorities, and to some extent monitored for accuracy. The path selection
algorithm takes, as input, the following properties derived from the consensus
directory:

– A node is valid if the version of Tor running on the node is not one of a
number of known-bad versions, which render the node unsuitable for use as
an entry or exit node.
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– A node is active if the publication timestamp in the consensus directory is
no more than 20 hours old, the node is valid and is marked as running.

– A node is stable if its self-reported uptime is among the top half of Tor
network nodes, or whose uptime at least 30 days1.

– A node is fast if its capped advertised bandwidth is among the top 7/8 of Tor
network nodes, or whose capped advertised bandwidth is at least 100 kB/s.

4.2 Path Requirements

For any path, no two nodes may be in the same equivalence class, i.e. if their IP
addresses have the same most significant 16 bits (in the same /16, following CIDR
notation [12]), or if both nodes declares the other to be in the same family. This
helps to avoid two nodes on a path being in the same administrative domain, as
well as limiting the effectiveness of injecting many nodes using easily attainable
/24 address ranges.

A stable path is one made solely of stable nodes. Stable paths will be used
for connections that are expected to be long-lived, currently determined using
a table of port numbers. For example, SSH and IRC connections will use stable
paths, with the intent of providing more reliable service.

A fast path is one made up solely of fast nodes. Fast paths will be used for
almost all connections, except for setting up and connecting to hidden services.
The intent here is to provide the latter greater anonymity by allowing more
nodes from the network to be used for these security-critical functions.

4.3 Node Selection Weighting

Once the list of acceptable candidate nodes is built, three random selection
algorithms may be used to select from them:

– Simple random selection (SRS), in which the node is selected from a set of
candidate nodes with uniform probability.

– Bandwidth-weighted random selection (BWRS), in which the node is selected
from a set of candidate nodes with probability proportional to their individ-
ual capped bandwidth.

– Adjusted bandwidth-weighted random selection (ABWRS), where bandwidth-
weighted selection is used, but exit nodes are entirely eliminated from selec-
tion if less than one third of overall network bandwidth is advertised by exit
nodes, or weighted in order to reduce the chances of selecting an exit node
for other points on the resulting path.

Nodes are selected randomly from the set of suitable nodes using one of
two path selection algorithms: SRS for paths requiring additional security, and
1 More recent versions of Tor directory authority implement basic validity checking on

uptime; as we do not specifically consider time as a resource, this does not change our
analysis. However, high-uptime malicious nodes are not difficult for an appropriately
resourced attacker to create.
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BWRS and ABWRS for fast paths. Entry and middle node selection are adjusted
to avoid overload of potential exit nodes. Nodes are selected beginning with the
exit node, typically the most constrained in choice due to the need to use a node
with a suitable exit-policy, followed by the entry node, and then middle nodes.

5 Measuring the Probability of Path Compromise

Our metric of security is probability, with respect to cost and selection algorithm,
that an attacker compromises a connection by controlling the first and last hop.
While many factors could be considered in a definition of investment, we address
the cost of attack in terms of two elements that act as inputs to the path selection
algorithms: the number of nodes available to the attacker, and the bandwidth
available for each node.

After one node in a family is selected, other nodes in the same family will be
ignored during further path selection so we assume that attackers will invest in
nodes only in different families in order to avoid wasting resources. While not
traditionally considered, this approach is consistent with an attacker controlling
a botnet, because bots are geographically and network topologically diverse. IP
addresses and bandwidth could be further mapped into real-world costs, such as
the costs of co-location and hardware, if desired.

Our analysis assumes optimal performance by Tor in determining the correct
uptime and throughput of nodes; if nodes are able to lead Tor directory author-
ities to incorrectly publish information on their performance, this may lead to a
greater success rate for the attacker, but is beyond the scope of this work. While
Tor is currently unable to fully assess whether the advertised bandwidth of a
node is accurate, proposals have been made to do so [7]; likewise, Tor increas-
ingly tracks the reputation of nodes in the network in order to evaluate their
stability claims.

5.1 Experimental Design

We have created a Tor path simulator, which accepts as input the existing
consensus directory tracked by the Tor directory authorities, and a set of ar-
tificially introduced malicious nodes with given parameters. The simulator gen-
erates paths with specified constraints, such as the requirement for being fast or
stable, and evaluates the probability that each path selected is compromised.

We captured a snapshot of the Tor consensus directory on 7 June 2007, which
includes 1 484 router descriptors, of which 1 044 are considered active and 521 are
considered both active and stable. While the set of nodes available for exit traffic
varies by protocol and destination, 325 nodes in the data set are appropriate for
general HTTP exit traffic.

We then ran the simulator with various path requirements and attacker node
investments in order to evaluate the protection that the path selection algorithms
offered. We consider only the overall probability that any given connection will
be compromised, not whether any given end-user will have their connection
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compromised. This requires us to observe the guard requirements for entry nodes,
but not to consider the conditional probability of connection compromise given
a client’s previous path choices.

We compared four path selection algorithms:

B/W: Tor’s default bandwidth-weighted algorithm based on a combination of
the BWRS and ABWRS algorithms.

Uniform: Tor’s uniform selection path algorithm, which uses SRS for more
security-sensitive paths, such as with hidden services.

S-B(1): The S-B path algorithm with parameter s = 1, reflecting a desire for
increased anonymity.

S-B(15): The S-B path algorithm with parameter s = 15, reflecting a desire
for increased performance.

The simulator selects 1 000 random paths through the network and determines
whether the first and last hop are malicious, generating an approximate proba-
bility of compromise given the attacker model and path selection algorithm. We
implement two attacker investment strategies that reflect possible cost models:
one in which each additional node adds a fixed amount of bandwidth, and a
second in which the attacker is able to invest a fixed total amount of bandwidth
over a variable number of nodes.

The former reflects a world in which many sites contribute malicious nodes
with bandwidth, such as a botnet2, and the latter in which a single site is able
to use diverse network addresses over a single link of fixed bandwidth, such
as in a co-location centre3. These represent extremes in strategy, but allow us
to evaluate the effectiveness of different path selection algorithms inside, and
outside, of their assumptions.

5.2 Results

In our first experiment, shown in Figure 1, we compare the rate of path com-
promise when injecting 20 kB/s and 256kB/s malicious nodes over the four path
selection algorithms. The uniform and S-B(1) algorithms are unaffected and rela-
tively unaffected, respectively, by the differing bandwidth of injected nodes. With
low bandwidth injected nodes, the compromise rate for the bandwidth-weighted
path selection algorithm is similar to S-B(15), but with higher bandwidth in-
jected nodes it is comparable to uniform selection.

In our second experiment, shown in Figure 2, we compare compromise rate,
while injecting 20 kB/s nodes for HTTP and SSH connections. Tor requires the
use of a stable path for SSH, due to the expectation of longer connection life
2 Dagon [13] has determined that botnets see both high geographic and network topol-

ogy distribution. One small botnet consists of 1 965 members distributed over 305
unique ASes, 70 unique /8s, 1 084 unique/16s, and 1 872 unique /24s.

3 Because collocation centres frequently carry network traffic for many different cus-
tomers and participate fully in BGP, we consider them to also have considerable
address space access, able to span multiple /16 networks.
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Fig. 1. Percentage of 1 000 generated paths compromised by injecting nodes at 20 kB/s
per node or 256 kB/s per node, using the Tor bandwidth-weighted, uniform, S-B(1) and
S-B(15) path selection algorithms

spans, unlike HTTP. As a result of the smaller pool of stable nodes, the com-
promise curve for uniform selection has a significantly steeper slope with SSH
than it does for HTTP. It requires one third fewer malicious nodes (and hence
two thirds the bandwidth) for an attacker to compromise half of the connections
using 20 kB/s malicious nodes.

In our third experiment, shown in Figure 3, we examine the probability of
compromise when a fixed investment of bandwidth (100MB/s) is shared over a
varying number of nodes. The Tor uniform path selection algorithm exhibits the
expected behaviour that rate of compromise corresponds simply to the number
of nodes injected, and not their bandwidth. S-B(1) tracks the Tor uniform path
selection algorithm, placing little weight on bandwidth. Because the Tor band-
width cap is 10MB/s per node, the full investment of bandwidth is only realised
once at least ten injected nodes are present. The Tor bandwidth-weighted path
selection algorithm therefore offers essentially a constant compromise rate, once
the bandwidth per node drops below the bandwidth cap.

The S-B algorithm with parameter 15 exhibits quite interesting behaviour: as
longasthemaliciousnodebandwidth isgreater than thebandwidthofalmostallTor
nodes,performancegrows rapidly toa50percentcompromise rateat24nodes.After
that point, the probability of compromise drops rapidly because the bandwidth of
malicious nodes drops and the probability of selecting them is greatly reduced.

These results lead to a surprising conclusion: the Tor bandwidth-weighted
path selection algorithm and S-B(15), tuned for better performance, have a sig-
nificantly lower compromise rate for low-bandwidth malicious nodes injected
in large numbers, than the Tor uniform and S-B(1) path selection algorithms,
which are tuned for better anonymity. Both the Tor uniform and the S-B(1)
path selection algorithms resist attack from a small number of malicious high
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Fig. 2. Comparison of HTTP and SSH compromise probability when injecting 20 kB/s
malicious nodes
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bandwidth nodes. However, botnets allow attackers to obtain large quantities
of low-bandwidth nodes. This is in contrast to the higher bandwidth nodes
apparently envisioned by the Tor designers when implementing the 10MB/s
bandwidth cap.

Metrics of anonymity based solely on uniformity of path selection, such as
entropy or Gini coefficient do not capture these factors. The link between these
metrics and practical security depends on the assumption that cost of injecting
nodes is independent of the path selection algorithm and node parameters. In
the case of Tor, where path selection probability depends strongly on bandwidth,
this is analogous to assuming that an attacker has unlimited bandwidth, but is
constrained by IP addresses. Where a more realistic view of the threat model
is adopted, in which both bandwidth and IP addresses have a cost, path selec-
tion algorithms which are supposedly less secure under the entropy model may
actually resist attack, provided bandwidth capacity can be accurately tracked.

5.3 Generalising the Attacker

In this section, we examined attackers with a variable number of nodes, and
different constraints on bandwidth. We can generalise this approach by modelling
an attacker as having a budget c, and where the cost of buying n nodes each
using b bandwidth is C(n, b). Such an attacker can chose to occupy any point
(n, b) such that C(n, b) ≤ c, and rationally will pick the point at which the
probability of compromising paths is the highest.

Figure 4 shows the path compromise probability for a series of points in the
(n, b) space. Lines overlaid show the bandwidth and node tradeoffs available to
the three attackers discussed in this section – previous graphs represent slices
in Figure 4. The attacker shown in Figure 1(a) and Figure 2, with a variable
number of 20 kB/s nodes can be modelled as b ≤ 20; the attacker shown in
Figure 1(b) is similar, with b ≤ 256. An attacker with a constant bandwidth,
shown in Figure 3, can be modelled as n × b ≤ 100 000.

No one path selection algorithm gives the minimum compromise rate for all
points, so no algorithm is clearly the most secure. Instead, the best-performing
scheme depends on the threat model, which in turn defines allowable points in
the (n, b) space. Once this is done, each strategy can be examined to establish
the attacker’s maximum compromise rate, and the selection algorithm with the
minimum selected.

6 Modelling the Performance of Tor

Our metric for performance is the expected processing time for a cell. One other
proposed metric for performance, as measured by Snader and Borisov, is the
throughput of a node which adopts the modified selection scheme. This is a
good measure for user desires, but it does not take into account system-level
effects that would result if all nodes adopted the same strategy. In contrast, this
section models the effect of modifying the full network.
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In the previous section, we evaluated the performance of four Tor path selec-
tion algorithms with respect to their susceptibility to compromise, concluding
that they vary in response to the injection of malicious nodes. However, that anal-
ysis is not useful in isolation, as the Tor design is intended to balance competing
demands for anonymity and performance. Here, we evaluate the performance of
the path selection algorithms with respect to network performance.

6.1 Queueing Theory Background

We will consider an infinite length queue Q, with mean arrival rate λ cells per
second, and whose requests are processed by a single server, each taking on
average x̄ seconds. Initially we will make no assumptions about the distribution
of processing duration, but the input process is assumed to be Poisson i.e. we
have a M/G/1 queue. The Poisson assumption is known not to perfectly match
actual usage, but with a sufficiently large number of users it should be close
enough for our results to be useful.

The average time a request will wait in the system (firstly waiting in the
queue, then being serviced) is therefore:

t = x̄ + w̄ (5)

Where w̄ is the average time a request will remain in the queue.
Let the utilisation factor for Q be ρ = λx̄. A queue for which 0 ≤ ρ < 1 has

a finite value of w̄.
From the Pollaczek-Khinchin result [14, p16], we can calculate w̄ as follows:

w̄ =
λx2

2(1 − ρ)
(6)

6.2 Calculating Waiting Time for a Family of M/D/1 Queues

We will model a single-hop anonymity network as a family of M/D/1 queues,
that is an infinite length queue Qi, for 1 ≤ i ≤ n with a Poisson input process
with rate λi and constant processing time of x. The user-base of the whole
network can be treated as a Poisson process of rate Λ. Each client will select
paths according to a path selection algorithm, which results in node i being
selected with probability qi. The traffic at any individual node λi will therefore
be qiΛ. From Equation 5 and Equation 6, the average time ti a cell will wait in
queue Qi is:

ti = xi +
qiΛx2

i

2(1 − qiΛxi)
(7)

The expected waiting time for a cell is ti weighted by the probability of Qi

being selected, i.e.

T =
n∑

i=1

qiti =
n∑

i=1

qixi(2 − qixiΛ)
2(1 − qixiΛ)

(8)
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6.3 Waiting Time for Tor’s Bandwidth-Weighted Algorithm

We will first consider the average waiting time for the Tor network, with the
bandwidth-weighted algorithm. Here, the probability qi of selecting a node is
the ratio between that node’s bandwidth 1/xi and the network total M .

qi =
1

xiM
(9)

From Equation 8 and Equation 9, the time a cell is expected to wait in the
network is:

Tb/w weighted =
n∑

i=1

2 − Λ
M

2(M − Λ)
= n

2 − Λ
M

2(M − Λ)
(10)

6.4 Waiting Time for Tor’s Uniform Path Selection Algorithm

In contrast, when bandwidth is not considered, the probability of selecting a
node Qi is n−1. Hence from Equation 8 the expected waiting time becomes:

Tuniform =
n∑

i=1

n−1xi(2 − n−1xiΛ)
2(1 − n−1xiΛ)

(11)

6.5 Waiting Time for the S-B Selection Algorithm

The selection probability qi for the S-B scheme depends on the position of the
node Qi in the bandwidth ranking. From this, TS-B can be found by substituting
the expression for qi into Equation 8. The CDF for the probability distribution
of qi is the inverse of Equation 1 and Equation 2. If xi are sorted in ascending
order the selection probability is therefore:

qi = s−1
(
log2(1 − n − i + 1

n
(1 − 2s)) − log2(1 − n − i

n
(1 − 2s))

)
(12)

6.6 Comparing Path Selection Algorithms

We can calculate the expected latency for the whole network from Equation 8,
by establishing the selection probabilities qi for each of the path selection al-
gorithms. Also, we require xi which can be obtained from our Tor consensus
directory snapshot. Finally, we need the input rate for the network. Each Tor
node reports how much traffic it has processed over a number of 900 second
periods, so by taking the median for each node, and summing these, we can
approximate Λ. We find that the utilisation factor for the network is 49.6%.

When calculating the expected network latency, we face the problem that for
the S-B path selection algorithm, some nodes have a utilisation factor greater
than 1 (750 nodes for S-B(1) and 53 nodes for S-B(15)). In our model these
nodes would have an infinite queue length and hence our expected latency for the



130 S.J. Murdoch and R.N.M. Watson

Node bandwidth (kB/s) (log scale)

C
um

ul
at

iv
e 

w
ei

gh
te

d 
la

te
nc

y 
(s

) 
(lo

g 
sc

al
e)

●

●

●
●

●
●
● ● ●●●

●●
●● ●●●

●●●●●●●●●
●●●●

●●●●●
●●●●● ●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●
● ● ●●●

●●
●● ●●●

●●●●●●●●●
●●●●●

●●●●●
●●●● ●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●

●
●

●
●
● ● ●●●

●●
●● ●●●

●●●●●●●●●
●●●●

●●●●●
●●●●● ●●●●●●

●●●

●

●

●
1e

−
06

1e
−

04
1e

−
02

1e
−

00

Uniform

S−B (15)

B/W

S−B (1)

1e−01 1e+01 1e+03

Fig. 5. Cumulative weighted expected waiting time at each node in the network. The
rightmost point shows the expected latency for the whole network. Dots are drawn at
nodes which will be overloaded.

network would also be infinite. The expected latency, using the Tor bandwidth-
weighted algorithm, is 4ms. In contrast, when only a single node was modified
to use S-B(15), its latency approximately halved [7]. The fact that the network
cannot sustain the same overall throughput with the S-B algorithm, strongly
suggests that the current Tor path selection algorithm is superior.

To quantitatively compare path selection algorithms, we can instead drop the
overall throughput and see at which point the expected queue length becomes
non-infinite. Even at 1% throughput, the expected waiting time is still infinite,
but now because of 4 and 1 low-bandwidth nodes for S-B(1) and S-B(15) respec-
tively. The throughput must be reduced to 0.25% for S-B(15) to generate a well
defined expected latency of 13ms; at the same point Tor’s bandwidth-weighted
algorithm gives 3ms. At 0.025% throughput, S-B(1) has an expected latency of
48ms whereas Tor’s bandwidth-weighted algorithm still gives 3ms.

Alternatively, for nodes which are overloaded, we can clip the expected latency
to the maximum value of the rest of the network (analogous to a timeout). The
result is shown in Figure 5. Here we can see that the expected network latency
is still far higher for the S-B selection algorithms: 401ms for S-B(1) and 275ms
for S-B(15), compared to 4ms for Tor’s bandwidth-weighted algorithm. Also,
the timeout failures are substantial: 65% for S-B(1), because of the 750 nodes
which are overloaded (72% of the network) and 44% for S-B(15), because the
top three nodes are overloaded, which are used for 43.9% of selections.
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7 Conclusion

In this paper, we have analysed the effectiveness of several Tor path selection
algorithms with in terms of two metrics: probability of path compromise with
respect to attacker investment, and expected latency. This analysis has demon-
strated the surprising result that not only does Tor’s default bandwidth-weighted
path selection algorithm offer improved performance over the supposedly more
secure Tor uniform path selection algorithm, but also offers improved anonymity
in the presence of node-rich but bandwidth-poor attackers.

The vulnerability of supposedly secure path selection algorithms reflects a
historical assumption that bandwidth is a low-cost commodity to acquire, but
that large numbers of nodes in different equivalence classes are expensive. We
believe that this assumption no longer holds due to the proliferation of botnets,
which frequently have poor upstream bandwidth from each individual node, but
high network and geographical diversity.
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Abstract. Timing analysis poses a significant threat to anonymity systems that
wish to support low-latency applications like Web browsing, instant messaging,
and Voice over IP (VoIP). Research into timing analysis so far has been done
through simulations or unrealistic local area networks. We developed SubRosa,
an experimental platform for studying timing analysis attacks and defenses in
low-latency anonymity systems. We present results of experiments on PlanetLab,
a globally distributed network testbed. Our experiments validate the major con-
clusions, but not the detailed results, obtained by prior simulation studies. We
also propose a new lightweight defense based on the principles of mix design
called γ-buffering and show the limitations of this approach. Finally, motivated
by our experimental results, we introduce spike analysis, a new timing analy-
sis technique that takes advantage of unusual delays in a stream to substantially
reduce errors over prior techniques.

1 Introduction

Low-latency anonymity systems provide network-level privacy for interactive applica-
tions such as Web browsing and secure shell (ssh). Such applications have timing con-
straints that prevent the use of techniques such as batching and reordering messages,
as found in mixes [5]. Perhaps the most well-known and heavily-used low-latency
anonymity system is Tor [10], a highly-distributed network of volunteer-run anonymiz-
ing proxies called Tor nodes. Users pass their TCP packets through a circuit of three
Tor nodes and use a technique called layered encryption to ensure that the first Tor and
second Tor nodes cannot see the contents and final destinations of the packets. In partic-
ular, this prevents the first Tor node from linking the user to her packets, which would
compromise the user’s privacy.

Ideally, an attacker that seeks to break the user’s privacy would have to compromise
or control all three Tor nodes on the user’s circuit. However, timing analysis is a well-
known threat to low-latency anonymity systems like Tor. In essence, an attacker that
observes packets on both ends of a path can use the timings of those packets to confirm
that the sender and receiver are communicating. Powerful global eavesdroppers can
extend this attack to perform traffic analysis on the entire network [6]. More limited
attackers, such as an eavesdropper that can see only parts of the network [17] or a
malicious subset of the anonymizing proxies [14], can also perform traffic analysis.

In the case of a subset of malicious proxies, the first proxy and the last proxy on the
circuit can use timing analysis to confirm that they share the same circuit. This allows

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 133–150, 2008.
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the attacker to link the user with her packets with only two proxies. Although this may
not seem much harder than controlling all three proxies on a Tor circuit, prior work
shows that it likely means an order of magnitude more effort for the attacker [30].

Several prior studies have shown that timing analysis can be highly effective against
low-latency anonymity systems [6,14,31]. In fact, it seems to be effective despite expen-
sive countermeasures such as circuits with more proxies and the use of traffic shaping,
in which packets are sent only at specified times and dummy packets are sent when user
packets are not available [14]. These prior studies, however, have either used simula-
tion [6, 14] or small-scale experiments over local area networks [31].

Network timing over the Internet is difficult to model accurately for simulation or
emulate correctly with delay generators. For example, one study uses exponentially-
distributed delays [6], while another uses normally-distributed delays [28]. One study of
Voice over IP (VoIP) network dynamics shows that the delay characteristics varied, such
that they would best be modeled as gamma-distributed sometimes and exponentially-
distributed other times [12]. Another study of VoIP dynamics suggests that a shifted
gamma distribution is the best to model the network delay [15]. Choosing one of these
may be sufficient to understand the performance of networks, but may not provide an
adequate basis for the precise timings involved in timing analysis. Realistic models
are important in understanding anonymity properties; in high-latency mixes, assump-
tions that the input traffic was Poisson distributed led to a design with poor anonymity
properties [9].

To address the issue of realism in timing analysis experiments, we introduce Sub-
Rosa1, an experimental platform for studying timing analysis and low-latency
anonymity, designed to run on PlanetLab [1]. PlanetLab is a global overlay network
that supports the development of new network services. SubRosa consists of server,
client, and sink components that emulate the behavior of a low-latency anonymity sys-
tem. We used SubRosa to evaluate a single timing analysis method and several defenses.
In particular, we apply the cross-correlation method of timing analysis introduced by
Levine, et al [14], and study constant-rate cover traffic, defensive dropping, and a new
light-weight defense against timing analysis that we call γ-buffering. γ-buffering is de-
signed to remove timing correlation from the network stream through limited delays at
the proxies.

Our results show that defensive dropping is more effective than shown in simulation,
even at lower drop rates than previously studied, and that γ-buffering is surprisingly
ineffective unless buffering exceeds any burst of traffic. Deeper investigation into the
causes of these results has led us to identify traffic patterns that are present even when
defensive dropping makes typical statistical correlation ineffective. In particular, we
have developed a new timing analysis technique that we call spike analysis, by which
the attacker can achieve substantial improvements against all defenses, and defensive
dropping in particular.

In Section 2, we discuss prior work in performing and defending against timing anal-
ysis in low-latency anonymity systems. Section 3 discusses the γ-buffering algorithm
in depth. We then overview the SubRosa experimental platform, the PlanetLab testbed,

1 The name is based on the Latin phrase, meaning “under the rose,” which has been used to
signify secrecy, and was notably found in the recent novel The Da Vinci Code [4].
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Fig. 1. Timing analysis based on correlating flows

and our experiment setup in Section 4. We present and discuss the results of our exper-
iments, as well as the spike analysis algorithm, in Section 5 and conclude in Section 6.

2 Related Work

Many systems have been proposed and developed for low-latency anonymous commu-
nications (e.g., [2,10,11,18,22,23]). Various studies have investigated how to break the
anonymity provided by these systems and developing further defenses against their at-
tacks. This study focuses on timing analysis attacks: attacks designed to link users with
their messages based on the timings of packets in the network. Timing analysis attacks
can be classified into two categories: passive and active. A passive adversary attempts to
perform timing analysis based only on observations of the timings of packets. An active
attack assumes that the adversary not only can observe traffic but can also delay and
inject packets. Active attackers certainly are more powerful, as they can overcome lim-
ited random perturbations in the packet timings [28,29]. However, these attacks require
the ability to delay packets with very precise timings, and this can be more difficult for
large-scale attacks than simply eavesdropping and recording the delays.

Other active attacks, such as the congestion-based attacks of Murdoch and Danezis
[16], use a different attacker model and seek a different result. For example, recent work
by Hopper et al. combines latency measurements with a congestion attack to see if two
Tor paths are the same, thereby linking ongoing connections [13]. We are specifically
seeking to de-anonymize the connections, i.e. to identify the IP address of the sender.

We believe that both active and passive approaches to timing analysis should be
examined. For this study’s threat model we use a passive adversary who controls a
subset of the mixes. A nearly equivalent model is that of a passive eavesdropper that can
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monitor the timings of packets entering and exiting a subset of the mixes. Our results
also can be helpful for understanding the capabilities of a global passive eavesdropper.
We discuss this distinction in more detail in Section 5.

Figure 1 shows the basis of timing analysis; the relative time difference (δ) between
two consecutive packets remains roughly the same as flows traverse the overlay net-
work. In other words, δ between two packets leaving the entry node will be approxi-
mately the same as that of the packets entering the exit node of the circuit. This property
of the network flow is used for timing analysis. Statistical correlation can be found be-
tween various distinct streams to determine the most likely sender and receiver of the
stream and compromise the anonymity [14]. A dropped packet in the stream, whether
intentional or due to network congestion, will cause the timings of the packets to be
off by one. As a result, the correlation will be calculated between packets that do not
match. To avoid this effect, the attacker can count of the number of packets received
during a time window instead of simply matching the timings of packets [14].

2.1 Defenses against Timing Analysis

Constant rate cover traffic along the entire path is a known defense against timing anal-
ysis attacks. When all the participating nodes send data as the same constant rate, cover
traffic makes all the streams look the same and makes it difficult to find correlations
based on the time difference to isolate the streams. Pipenet [7] and ISDN-Mix [21] use
end-to-end cover traffic whereas Tarzan [11] uses hop-by-hop cover traffic. Constant
rate cover traffic, however, adds tremendous overhead to the network. For the cover
traffic to be foolproof, all the nodes must be synchronized and transmit the packets at
the same constant rate. Even with synchronized constant rate cover traffic vulnerability
to an active adversary still remains. For these reasons, and under the assumption that
the routing infrastructure is uniformly busy, systems like Tor [10] and Crowds [22] do
not use any cover traffic.

Based on the idea of cover traffic, to reduce the timing correlations, various defense
mechanisms have been proposed. In partial-route padding [26], all the cover traffic is
dropped at a designated intermediate mix. Defensive dropping [14] generalizes the idea
of partial-route padding, where the initiator creates a dummy packet and marks it to
be dropped at any intermediate mix at random. When the packets are dropped at ran-
dom at a sufficiently large frequency, the timing correlation is reduced [14]. Adaptive
padding [25] is designed to reduce timing correlation by inserting dummy packets in
the network stream, instead of dropping the packets. It is used to fill statistically un-
likely gaps in the packet flow without adding latency. We note that it is highly effective.
However, it requires that inserted dummy packets be sent to the responder, which may
not be practical in many scenarios. This is especially true when end-to-end traffic is not
encrypted, as packets with random or computer-generated content should be easy for
the attacker to identify and remove from streams.

3 A New Approach to Buffering for Low-Latency Anonymity

In the original mix design, each user must send one packet in each batching period.
This has previously been extended to low-latency mixes by the use of constant rate
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traffic, in which each user emits packets at a constant rate, using dummy packets when
real user traffic is not available. Constant rate traffic reduces the correlation between
different flows since all the flows receive constant number of packets with the same
time difference. For practical mix designs, various batching approaches have been pro-
posed [8]. Relatively few designs that include buffering, however, have been proposed
for low-latency anonymity systems. In this section, we introduce γ-buffering, a new
lightweight defense that extends the idea of constant rate traffic to better prevent timing
analysis attacks.

3.1 γ-Buffering

γ-Buffering is a technique for buffering traffic that can be used to undermine traffic
analysis attacks in low-latency anonymous communications systems. This technique is
designed with the aim to maintain low latencies at the cost of some cover traffic and can
be adapted for different levels of allowable latency and bandwidth use.

The main insight behind this technique is that, with sufficiently high traffic rates,
standard batching techniques from mixes can be used without slowing down traffic
excessively. While low-latency mixes setup and utilize paths for streams of packets,
packet-level batching can effectively intertwine the streams’ timing characteristics and
destroy many of the patterns that attackers would seek to use in timing analysis. Fur-
thermore, batching creates a variable intermediate delay that may be able to remove
watermarking introduced by an active attacker [27].

One obvious concern with batching in low-latency anonymity systems, however, is
that users would have different activity levels and some streams would be greatly de-
layed while buffers waited for activity on the other streams. If, however, the system
uses a high rate of end-to-end cover traffic, there will typically be enough traffic on
all streams. The amount of traffic entering a proxy at a given time, however, can still
depend on the number of connections entering the proxy and the network conditions
for each connection. We could require that each path send a packet, as proposed in
Pipenet [7], but that could lead to long delays and denial-of-service (DoS) attacks. An
adversary could prevent a proxy from sending messages by preventing an initiator or
number of initiators from sending messages to the mix.

In an attempt to remove enough timing patterns without introducing such risks, we
have designed γ-buffering to be more flexible. The algorithm is simple: if there are p
incoming connections to a proxy, then the proxy buffers at least γ ∗ p packets before
sending the batch, where γ is a fraction that can vary depending on the system needs.
This effectively turns each proxy into a threshold mix, with a threshold of γ ∗ p mes-
sages [24].

When γ = 1, each proxy will get an average of one packet from each incoming
connection before sending the batch. For γ > 1, larger batch sizes help ensure security
at the cost of higher average latencies. For γ < 1, we can ensure a low latency when no
more than (1−γ)∗p connections are blocked or delayed. The buffering parameter γ can
be controlled at the system level or by individual proxies. When controlled by proxies,
different proxies may offer different γ values, allowing users to select paths with higher
or lower amounts of buffering to suit their needs. If the ratio of users to proxies grows,
meaning that there are more connections per proxy, then γ may be lowered due to
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greater cover traffic. This kind of non-uniform path selection, however, may have other
consequences for user anonymity [3], and further investigation is beyond the scope of
this work.

The other primary benefit of γ-buffering would be its resilience to changing network
conditions and DoS attacks. When other users’ connections fail or are delayed, this
creates delays for the user. Some delay is good; if the user sends traffic too aggressively,
then she will be subject to easier traffic analysis. The delay is bounded, however, as long
as at least the user’s own traffic continues to reach the proxy. End-to-end attacks will
become more difficult, even when conducted by a global adversary, as long as some
other paths continue to operate.

Another way in which γ-buffering would be resilient to active attacks is that delays
introduced along a user’s path will multiply to show delay on many other paths in the
system. The increased delay, introduced early in the path, will likely delay an entire
batch of packets at the next proxy. These delayed packets cause further upstream delays,
with an effect that is exponential in the length of the path. An attacker may observe a
delay that has propagated along either the original path or one that has been introduced
by the buffering, making it difficult to distinguish false positives from correct matches.
Unlike the addition of random delays along the path, γ-buffering introduces delays
simultaneous with other delays in the system, so that timing effects occur together and
are much less useful to the attacker for differentiating between paths.

We note that an attacker-controlled node could choose to not buffer packets properly.
However, an attacker controlling the first and last proxies would still need to contend
with buffering at intermediate nodes. If the attacker needs to control the intermediate
nodes to be successful, then we have made a substantial improvement in the system’s
defense. If the exit and intermediate nodes are compromised, but the first node in the
circuit is not, then the attacker will not only need to eavesdrop on the initiator or the
first node, but also contend with buffering at the first node. The attacker has similar
problems when the last node is not compromised.

3.2 Partial Buffering

Due to early findings that γ-buffering was not as effective as we had expected, we also
developed a slight variation that we call partial buffering. Partial buffering implements
γ-buffering at the intermediate proxies only, not at the first or last proxies. In particular,
buffering at the first proxy creates variation in the traffic patterns that could then be ob-
served at the last proxy. Intermediate buffering may only remove some of this variation.
With partial buffering, these variations are not introduced by the first proxy, but we still
get the benefits of buffering at the intermediate proxy. We evaluate both γ-buffering and
partial buffering in our experiments.

4 Experimental Design

In this section, we describe SubRosa, an experimental platform for investigating timing
analysis on the Internet. We also describe our experiments using SubRosa, which were
conducted on PlanetLab.
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4.1 PlanetLab

PlanetLab (see http://www.planet-lab.org) is a global research network that
supports the development of new network services. It is an overlay network consisting
of computers distributed over six continents, with the highest concentration of nodes in
North America, Europe, and East Asia. Most of the machines are hosted by participating
research institutions; all of the machines are connected to the Internet, and some have
Internet2 connections. All the computers on PlanetLab run a Linux-based operating
system from a read-only media. The key objective of PlanetLab’s software is to support
distributed virtualization – the ability to allocate a slice of PlanetLab’s network-wide
hardware resources to an application. This allows an application to run across all (or
some) of the machines distributed over the globe, where at any given time, multiple
applications may be running in different slices of PlanetLab.

One effect of virtualization is that our testing process may not get access to the sys-
tem for relatively long periods of time. The advantage of this is that the system does
not behave like a set of dedicated servers for individual streams — performance varies
depending on the load from other experiments. The disadvantage is that the platform
is less consistent than we might expect anonymizing servers with many simultaneous
connections to be. Following the guidance of Peterson et al., this does not prevent us
from getting accurate latency measurements [20]. To provide consistent expected per-
formance and dedicated resources on a community shared network, PlanetLab allows
for reservation of resources through the Sirius Calendar Service. Reservation entitles
the slice a dedicated 25% of CPU capacity and 2.0 Mbps of the system’s bandwidth.
All other active slices share the remaining resources with equal priority. Unfortunately,
Sirius is still under development and does not reliably schedule and allocate resources.
PlanetLab has over 800 computers located in over 400 locations as of October 2007.

A distributed and geographically dispersed Linux-based network testbed was an
ideal platform for collecting data for this research. The global distribution of Planet-
Lab nodes allows us to test the effects of real network latency. We created a slice with
over 300 nodes for our experiments on PlanetLab. Sites with explicitly identified In-
ternet2 connection were excluded. PlanetLab has various deployment and monitoring
tools available, but we developed our own to meet our needs as the existing tools were
lacking features needed to manage our experiments.

4.2 SubRosa: An Experimental Platform for Studying Timing Analysis

We developed SubRosa to run on PlanetLab and collect data for this study. We designed
SubRosa to emulate the behavior of a Tor-like network over the unreliable UDP trans-
port. It is a simple application for collecting timing data and does not use encryption.
Only information visible to an adversary in the presence of encryption has been used to
perform timing analysis in our experiments. This means that SubRosa does not capture
delays due to encryption and decryption at the proxy. However, we found that the delays
due to virtualization on PlanetLab nodes were occasionally quite high (more than one
second) and likely suffice to emulate high-load scenarios. SubRosa is written in C and
consists of three components: controller, srserver, srclient.

http://www.planet-lab.org
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Fig. 2. Data flow in an anonymizing network

– The controller component starts, stops and checks the status of the other compo-
nents. We used it to deploy the rest of SubRosa onto PlanetLab and keep track of
the versions of the components while conducting experiments.

– The srserver component acts as the Mix. It can act as the first mix, the last mix,
or as any intermediary mix on multiple paths simultaneously and it also captures
timing information of the packets it sends and receives.

– The srclient component represents the client and is responsible for generating data
on the network.

SubRosa is designed to collect timing data for various defense algorithms against
timing analysis and, hence, it is versatile. Hooks and exits are designed to collect timing
data as well as easily implement different algorithms for collecting data. All the variable
parameters are read from the configuration file.

Data flow in SubRosa is shown in Figure 2; circuit-building proceeds as in Tor [10].
N1 through N5 are nodes running srserver, C1 through C3 are nodes running srclient,
and S is the responder, or sink. We did not utilize a sink in this study.

4.3 Methodology

In our experiments, we fixed the path length to three. Since we did not use a sink, the
exit node on the path acts as a sink and generates the response. All the traffic generated
for the experiments was constant bit rate. Five PlanetLab nodes were selected based
on the load and the available bandwidth to act as servers for our experiments. Due
to the nature of the test bed, if and when a node was not available or was heavily
loaded, that node was replaced by another carefully chosen node. For use as servers,
we only selected nodes with uptime of more then 3 days, no bandwidth restrictions,
and less than 0.5 seconds response time. Servers were selected by manual use of the
CoMon monitoring infrastructure for PlanetLab. All the servers were closely monitored
during the experiments using CoTop slice-based top for PlanetLab. Results were not
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considered in the analysis if the node did not perform consistently for the duration of
the experiment.

More than 300 nodes were used as clients. For each experiment, clients were cho-
sen at random from this set nodes. At startup, clients randomly choose three out of the
five server nodes. Circuits are then established with those three nodes on the path. The
duration of our experiments was approximately 15 minutes each. Logs were collected
for analysis after each experiment, and timing data was extracted from the logs using
Perl scripts. Timing data was converted to zero base time to avoid time synchroniza-
tion issues and to accommodate the scripts for analyzing the data which were provided
by [14]. Experiments were conducted using 25 clients and packets were generated every
300ms and 100ms. We also collected data with larger numbers of clients, up to 100, but
saw no trends in the data as the number of clients grew.

Timing Analysis. For the timing analysis, we use the methodology and programs used
for the work of Levine et al. [14]. We describe the basic idea here, but refer the reader
to that paper for more details.

The main observation of our timing analysis method is that the timings seen by the
first proxy on a given path and the timings seen by the last proxy should be statistically
correlated. Thus, standard methods for statistical correlation should be effective in de-
termining whether the two proxies are observing the same path. There is a significant
caveat, however, in that a single dropped packet could cause the wrong packet times to
be compared. Finding the right match between sent and received packets could be com-
putationally expensive and is likely to only be an approximation. Levine et al. propose
to divide time into windows and count the number of packets that arrive for each proxy
during a given window. They use the timings of early packets to line up the windows.
Finally, a statistical cross-correlation is taken on the packet counts. A number of these
correlations is taken for each pair of first and last proxy, using a reasonable range of
alignments for the windows, and the best such correlation for the pair is chosen.

The cross-correlation values provide a statistical diagnostic test that tells the attacker
how closely the streams seen by the attacker are correlated. These values can compared
for streams that are and are not on the same path. We set a threshold correlation value
and say that the attacker thinks that all pairs of streams with correlation values above
the threshold are indeed on the same path.

We also introduce a new timing analysis technique called spike analysis. This tech-
nique is described in Section 5.2.

γ-Buffering. γ-Buffering is implemented on the servers. Multiplier γ is configured at
the start of the application. γ is multiplied with the number of active circuits on the
node to obtain the number of packets to buffer, before queuing it on the send queue.
During the buffering period all the packets received are stored in a list in random order.
Once the desired number of packets is buffered, the packets from the list are put on
the send queue and sent out using a pool of threads. The thread pool is created at the
startup and is kept alive for the life of the application to avoid overhead and improve
the response time. A pool of five threads was used for γ-buffering. γ-buffering was
implemented with a delay of 180 seconds after the server started, to avoid lockups
during the circuit building process. The packets sent during the first four minutes were
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discarded to compensate for the startup delay. γ values of 0.5, 1.0 and 1.5 were used for
the experiments.

Defensive Dropping. Defensive dropping is initiated by the client. The client, at ran-
dom, selects the packets to be dropped and marks it to be dropped at the intermediary
node. The drop command is set in the header for the intermediary node and, hence, no
other nodes on the path are aware of the dropped packets. The server, upon receiving a
packet with a drop command, logs the packet and stops further processing of the packet
by discarding it from the receive queue. We used drop rates of 20% and 50%.

Constant-rate Cover. Baseline data using simple constant rate cover traffic, and no
other defenses against timing analysis, were also collected for experiments with 25, 50,
75 and 100 nodes. Packets were generated at every 100 milliseconds and 300 millisec-
onds; other parameters were kept in line with other experiments.

5 Results and Discussion

In this section, we present the results of our experiments on timing analysis of a Tor-
like network. We begin by showing how effective each defense is against statistical
analysis. We then then examine timing results in more depth, describe a new timing
analysis technique called spike analysis, and show the effectiveness of this technique.

5.1 Effectiveness of Defenses

We now show relative effectiveness of various defenses against statistical cross-
correlation analysis. The attacker’s correlation-based diagnostic test is subject to two
types of errors: false negatives, in which the attacker fails to identify two streams as
belonging to the same path and false positives, in which the attacker incorrectly identi-
fies two streams from different paths as being from the same path. False negatives occur
when the threshold value is too high, i.e. the attacker expects the correlation to be higher
than it is. Similarly, false positives occur when the threshold value is too low. Thus, as
the threshold rises, the false positives drop off at the expense of a rise in false negatives.

A Receiver Operator Characteristic (ROC) curve is a graphical representation of the
trade off between the false negative and false positive rates for every possible threshold.
Conventionally, ROC curves show the false positive rate on the x-axis and the detection
rate, the attacker’s chance of correctly linking the two streams, on the y-axis. Note that
the detection rate is one minus the false negative rate. We plot different ROC curves on the
same graph to visualize the relative comparison. Curves that are closer to the upper left-
hand corner are better, in our case, better for the adversary. The worst case for an adversary
would be a 45 degree diagonal, i.e. x = y, which is the same as random guessing.

We also estimate the area under the curve (AUC) for each ROC curve. The AUC
gives us a single numeric value for each test that can be used for quantitative compar-
isons. The maximum AUC is 1.0, representing error-free detection, and the practical
minimum is 0.5, which is given by the ROC curve x = y. We calculate our estimate
of the AUC using a trapezoidal Riemann sum with the ROC points in our curves, i.e.,
the area under the curve between two points (x1, y1) and (x2, y2) is estimated as
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Fig. 6. Latency (RTT) for each defense. Error
bars show the average standard deviation.

A = 1
2 (y1 + y2) × (x2 − x1), where x1 < x2. We have approximately five times as

many points in our AUC calculation than shown in our graphs. For each set of results,
we also calculate the equal error rates (EERs) — the point in the ROC curve where
the false positive and false negative rates are equal. Table 1 shows the AUC, EER, and
latency values for several settings.

We present a comparison of our baseline traffic (constant rate cover traffic), defensive
dropping, and γ-buffering in Figure 3. First, we see that the attacker does quite well
when only constant rate cover traffic is used. The ROC curve approaches the upper left
hand corner, depicting a high success rate with relatively few errors. Table 1 shows
that the attacker gets an AUC of 0.959. This appears to validate the simulation results
of Levine et al. [14]. In particular, when the latency averages 50 ms and there are 1%
drop rates on each application layer hop in their simulations, they report equal error rate
of 8.1%. We show a higher rate of 12%, still validating the main point that statistical
correlation-based traffic analysis is effective.

We see that defensive dropping is very effective against our timing analysis — both
20% and 50% dropping rates result in ROC curves close to a straight line x = y.
Against defensive dropping of 20% and 50%, the attacker achieves AUCs of only 0.602
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Table 1. Area under the curve (AUC), equal error rate (EER), and latency values for defensive
dropping (DD) and partial buffering (PB)

Defense Baseline DD 20% DD 50% PB γ = 2 PB γ = 5

AUC 0.959 0.602 0.539 0.926 0.856
EER 12% 38% 48% 17% 24%

Latency (sec.) 0.300 0.271 0.314 0.375 0.515

and 0.539, respectively. This is a significant improvement for defensive dropping in
contrast with the simulation results of [14]. The equal error rates of 38% and 48%
for defensive dropping rates of 20% and 50%, respectively, both greatly exceed any
equal error rates achieved in their study. We explore the reasons for this difference in
Section 5.2.

Perhaps more surprising is the relatively poor performance of γ-buffering. With val-
ues of γ between one and five, the attacker is as successful, if not more, than for the
baseline constant rate traffic. For γ = 2 and γ = 5, we get AUCs of 0.983 and 0.970,
respectively; both are larger than for the baseline traffic. We speculate that this is due to
buffering at the first proxy in the circuit. This buffering can cause patterns in the traffic
that may be found at the last proxy, despite further delays at intermediate nodes.

Our speculation about the failure of γ-buffering appears to be validated by relative
success of partial buffering, in which the first proxy does not buffer packets. We show
ROC curves for detection against partial buffering in Figure 4 and in comparison with
γ-buffering in Figure 5. The latter figure only show the upper left hand quadrant of the
curve for better viewing. As the curves show, partial buffering provides a better defense
than the baseline constant rate traffic and much better than γ-buffering. Table 1 shows
that for γ = 2 and γ = 5, we get AUCs of 0.926 and 0.856, respectively. For γ = 5, the
equal error rate is 24%, which is a significant improvement over the baseline. For γ = 2,
the equal error rate is 17%. Nevertheless, defensive dropping is much more effective
than either setting. To get higher error rates, we set γ = 40 for a set of experiments.
Even at this setting, which is impractical due to substantial delays for every packet, we
only get an AUC of 0.635 and an equal error rate of 41% — approximately equivalent
to 20% defensive dropping.

We note that the difference between γ-buffering and partial buffering depends on the
attacker model in an important way that we have ignored to this point. If the attacker
controls the first and last proxies on the path, then our analysis holds. If the attacker can
eavesdrop on all of the traffic going into and exiting these same two nodes, but doesn’t
control the first proxy, it is somewhat more difficult for the attacker. In this case, γ-
buffering may be better than partial buffering to help hide the link between the user and
the traffic exiting the first proxy. Exploring the implications of this attacker model in
greater depth is beyond the scope of this work.

We also examine the latency from each of our schemes. As we see in Figure 6, the
latency is roughly the same for the baseline and defensive dropping cases, between
271 ms and 314 ms round trip time (RTT). We see an increase in RTT as we introduce
partial buffering. For γ = 2, we get a 25% increase in the average RTT over the baseline
data. For γ = 5, this rises to 72%. This suggests that small values of γ are likely to be
practical, while values over γ = 5 would increase latencies too much for general use.
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The error bars show the average of the standard deviations of the RTTs within each run.
The large standard deviation values for 50% defensive dropping and γ = 5 appear to
reflect experimental variation. The maximum RTT was over seven seconds.

5.2 Taking Advantage of Bursty Traffic

We now take a deeper look at the traffic patterns that lead to the results described above.
To more carefully study the variability of the timings, we present representative graphs
showing inter-packet delays (IPDs), which are the gaps between packets. In Figures 7,
8, 11, 12, 9, 10, we show the IPDs as sent by the first proxy in the circuit (dark bars) and
as received by the last proxy in circuit (light bars). In other words, they represent the
two timings used in our timing analysis techniques. We show 50 second intervals and
the two sets of times have been offset slightly to make patterns visually recognizable.
We say that spikes in these graphs represent high IPDs.

We see in Figure 7 a good match between the first proxy and last proxy IPDs for our
baseline constant rate streams with no other defense. In particular, we see that every
spike in the first proxy IPDs is matched with a nearly identical spike in the last proxy
IPDs. Some additional spikes are present in the last proxy’s IPDs, as would be expected
due to additional delays and possible variability between the two measurement points.
Given the similarity in the patterns, the success of statistical methods is not surprising.
In contrast, we can look at a sample of IPDs from experiments with 20% defensive
dropping in Figure 8. We see that there is relatively little connection between the two
streams’ timings. The two largest spikes in the first proxy’s measurement may or may
not be represented among the other spikes in the last proxy’s measurement; matching
the timings with confidence is difficult. Essentially, the spikes due to defensive dropping
are larger than the spikes due to normal variations between the client and the first proxy.

An interesting question to consider is why we get higher error rates for the attacker
than were reported in simulations by Levine et al. [14]. We speculate that perhaps in
simulation, one can get better and more consistent matches in timings between the first
and last proxy. If there is, e.g., clock skew, this could cause problems for the attacker.
Such an effect would be less problematic for attacking constant rate streams, in which
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there may be enough matching data early in the stream. Compensating for clock skew
is possible [19], but is beyond the scope of this work.

Spikes are quite prominent when γ-buffering is used. For γ = 2, shown in Figure 9,
we see that large spikes transfer easily from the first proxy to the last proxy. In Figure 10,
we see that a few spikes carry through despite the larger variation in IPD. These results
help to illustrate how statistical correlation can still find timing correlations despite
buffering.

Although much of the information in a stream is lost when defensive dropping is
used, defensive dropping can still leave spikes in traffic, especially larger spikes. In
Figures 11 and 12, we see a number of large spikes that have apparently transferred from
the first proxy through to the last proxy despite defensive dropping. This motivated the
development of a simple timing analysis technique called spike analysis that is designed
specifically for when there are spikes in the IPDs, e.g. due to slow response time on the
proxies or by the user node.

The spike analysis algorithm is given as tested in Algorithm 1. The essential idea is
to match the top f largest spikes (we use f = 5) in the first proxy’s IPDs with f out
of the top l largest spikes (we use l = 25) in the last proxy’s IPDs. We use l > f , as
we expect additional spikes in the last proxy’s IPDs. We try a range of offsets, up to
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Algorithm 1. Spike Analysis
TopFirstIPDs = GetTop5(FirstProxyIPDs)
TopLastIPDs = GetTop25(LastProxyIPDs)
MinError = ∞
for Offset = -100.0 sec. to 100.0 sec. by 0.01 sec. do

Error = 0;
for all fIPD in TopFirstIPDs do

Match = GetClosestInTime(fIPD, TopLastIPDs)
if TimeDifference(fIPD, Match) >= 1 sec. then

Error += 1 sec.
else

Error += (|fIPD − Match|)2
end if

end for
Error = SquareRoot(Error / 5)
if Error < MinError then

MinError = Error
end if

end for

100 seconds on either side of our best time synchronization estimate. The IPD values
in Algorithm 1 include both the time of occurrence and the IPD. Matching an IPD from
the first proxy’s data with an IPD from the last proxy’s data means finding an IPD that
is close in the time of occurrence. We choose the closest matches given the offset and
calculate the error as the standard deviation. If no match is within 1.0 seconds, we add
an error of 1.0 s econd (prior to dividing by the number of matches sought and taking
the square root). These are arbitrary values that worked well in our tests. Finally, we
select the offset that gives the lowest error.

In Figure 13, we see the effectiveness of spike analysis on our data in the form
of ROC curves. Table 2 provides AUC and equal error rates. The main result is that
defensive dropping can be attacked much more successfully with spike analysis than
with statistical correlation. In particular, the AUC for 20% defensive dropping is 0.913
and the equal error rate is 17% when using spike analysis, as compared with 0.602 AUC
and 38% equal error rate for statistical correlation. Note that the figure shows only the
upper left hand quadrant and that the axes have been shifted slightly to show the lines
with zero error rate. In particular, the attacker gets zero error for baseline traffic — he
can get 100% detection with no false positives as shown by the line touching the point
(0, 1) in the graph. The AUC for baseline traffic is the maximum of 1.0.

We also see that partial buffering with γ = 2 is much less effective against spike
analysis than statistical analysis, with an AUC of 0.989 and an equal error rate of only
4%. Perhaps more interestingly, we see that partial buffering with γ = 5 is only a
little bit less effective against spike analysis. The AUC is slightly higher at 0.864 and
the equal error rate of 24% is the same as with statistical analysis. In fact, this is the
most effective defense of the settings we tried against spike analysis. As we see with
Figure 10, the IPD graphs when γ = 5 have many spikes at the last proxy. From this
observation, we speculate that spike analysis with two mismatched streams is finding
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Table 2. Spike Analysis: Area under the curve (AUC), equal error rate (EER), and latency values
for defensive dropping (DD) and partial buffering (PB)

Defense Baseline DD 20% DD 50% PB γ = 2 PB γ = 5

AUC 1.0 0.913 0.871 0.989 0.864
EER 0% 17% 20% 4% 24%

Latency (sec.) 0.300 0.271 0.314 0.375 0.515

spikes in the last proxy’s IPDs that fit the profile of the first proxy’s IPDs. This leads to
false positives. We have observed that tightening the time requirements for more precise
matches can lead to more false negatives. Thus, with enough buffering, we seem to able
to maintain a defense against these passive timing analysis techniques.

6 Conclusion

To facilitate the research of low-latency anonymous systems in general and timing
analysis on low latency systems in particular, we developed the SubRosa experimental
platform. We modeled SubRosa on Tor-like systems but choose UDP as the transport
protocol to best study systems in which packet timing can be dictated by design choices
rather than TCP behavior. We ran experiments on the PlanetLab overlay network and
collected network timing data. Using this data, we performed successful timing analysis
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and evaluated several known defenses to avoid the attack. We introduced a light-weight
defense against timing analysis attack, γ-buffering, based on threshold mixes. Our re-
sults show that defensive dropping provides the best defense among those we tested
against statistical correlation-based timing analysis attacks by a passive adversary.

We also introduced spike analysis, a new timing analysis approach motivated by our
observations of inter-packet delays. Spike analysis takes advantage of the presence of
large spikes in the IPD traffic pattern. If the largest spikes are smaller than the changes
in IPD caused by perturbations like defensive dropping and γ-buffering, the attack will
not work well. However, an attacker who controls the first proxy in the circuit could
induce the necessary spikes by delaying packets. This active attack requires much lower
timing precision than the watermarking methods of [28] and we have shown here that
delaying only five packets can be enough to get good results. A reputation system or other
mechanism to ensure that attackers do not manipulate traffic in this way would have to
be very sensitive to relatively small changes in the traffic pattern. The adaptive padding
approach of [25] may be a useful supplement to the defenses we have tested here, as it
actively seeks to remove the spikes that form the basis of spike analysis. The practical
issues involved in using this technique, however, would need to be further refined.
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Abstract. Users building routes through an anonymization network
must discover the nodes comprising the network. Yet, it is potentially
costly, or even infeasible, for everyone to know the entire network. We
introduce a novel attack, the route bridging attack, which makes use of
what route creators do not know of the network. We also present new dis-
cussion and results concerning route fingerprinting attacks, which make
use of what route creators do know of the network. We prove analytic
bounds for both route fingerprinting and route bridging and describe the
impact of these attacks on published anonymity-network designs. We also
discuss implications for network scaling and client-server vs. peer-to-peer
systems.

1 Introduction

Anonymous communications were first introduced for electronic mail with the
mix network [3] and then extended to internet streams by onion routing [10,21,
2, 6]. Since then, attempts have been made to totally decentralize the provision
of anonymity services. First Tarzan [9, 8], then other systems [15, 26, 12] have
applied the peer-to-peer paradigm to ensure that all protocol participants are
both clients and routers that anonymize streams.

Besides the differences in the type of traffic carried or division of tasks within
the network, all those systems share a common architecture. Initiators of commu-
nications relay their messages or streams through third parties to evade identifi-
cation. The communication contents are encrypted to foil trivial passive linkage,
and in some cases countermeasures are applied against traffic analysis, such as
making messages uniform size or delaying them or injecting cover traffic.

Despite their common architecture, mix-based, onion-routing, or peer-to-peer
anonymizing networks protect against radically different threat models. Mix net-
works should be secure when under full surveillance, and when a large fraction
of routers used are corrupt [1]. Traditional onion routing and stream-based peer-
to-peer anonymizers, like Tarzan, are unable to resist even a passive attack and
cannot guarantee anonymity if both the initiator and responder of the commu-
nication are under surveillance [24]. Similarly, even an entirely passive adversary
controlling the first and last node in the path can trace the anonymized stream,
unless large amounts of cover traffic are used [23].

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 151–166, 2008.
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A key contribution of this paper is to present a novel class of traffic analysis
attacks against relay-based anonymizers, called bridging attacks. Bridging uses
some a priori information about the route selection of initiators to effectively
bridge over honest stages of mixing, making tracing a full path easier for the
adversary. As a technique bridging is closely related to route fingerprinting [4].
We present an analytic bound on route fingerprinting, using the Tarzan design as
an example, and discuss the impact of route fingerprinting against other classes
of anonymity systems. In particular, we compare route-fingerprinting resistance
for client-server designs vs. peer-to-peer designs and discuss the (encouraging)
implications for network partitioning.

2 Fingerprinting

2.1 Young Tarzan Leaves Telltale Fingerprints on the Vine

The early Tarzan design [9] aims to provide strong anonymity against a global
eavesdropper using a fully peer-to-peer architecture. The core design is based
on ideas from onion routing, with some modifications to distribute services that
are otherwise centralized in standard onion routing. The most important dis-
tributed service in Tarzan is the directory server providing a list of nodes with
their associated keys. Furthermore, Tarzan designers recognized that large scale
networks make low-latency traffic more susceptible to tracing, and to alleviate
the problem attempt to route multiple streams together by forcing them through
restricted routes, called mimics—a facet of Tarzan we do not discuss here.

Distributing the directory server functionality over a peer-to-peer network is
not straightforward and has deep repercussions on security. Tarzan relies on the
use of a Distributed Hash Table (DHT) [20] to store mappings of nodes and keys.
A DHT is a peer-to-peer protocol that allows nodes to construct a distributed
database mapping keys to values. Nodes are assigned a particular section of the
key space for which they store values, and there are efficient O(log N) algorithms
for finding the node corresponding to a particular key. Tarzan nodes store their
directory descriptors as values, and the key of the descriptor is simply its hash.

A Tarzan node joining the network has, as in traditional onion routing, to
‘discover’ a set of peers along with their directory descriptors containing their
cryptographic keys, to be able to construct paths and anonymize streams of
traffic. The original Tarzan design required nodes to discover at random only a
small subset of other nodes, and used a small subset of those to build anonymous
routes. Sampling was performed by selecting a random nonce and finding the
closest DHT key and associated directory entry, an operation that is efficient in
DHTs.

This approach introduces two problems. First, the sampling procedure is not
guaranteed to be uniform in the presence of adversaries prepared to subvert the
Distributed Hash Table. For any random key K the client choses, the adversary
can simulate a node with a directory descriptor mapping to a close-by key K ′ that
is closer than the closest genuine key Kg. Hence the adversary can easily populate
the client’s entries with corrupt nodes, making any routing over them ineffective.
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This attack is active, and requires the adversary to corrupt the underlying DHT
protocols (which is easy, since few DHT designs protect against such attacks
effectively). Attacking and defending DHTs is not the focus of this paper and
we will not concern ourselves any further with this line of attack.

Second, the client only chooses routes from a small subspace of all nodes, and
this subspace is known to the adversary. This in turn can help the adversary
identify which routes belong to each client. This family of attacks was briefly
introduced in route fingerprinting [4], and in this paper we present a novel attack
in this family we call route bridging.

To avoid fingerprinting attacks the final Tarzan design [8] requires each node to
know all other nodes—something hardly practical due to the large size and churn
of peer-to-peer networks. Our analysis and discussion of these attacks concludes
that for weaker threat models this approach may be over-conservative.

2.2 Bounding Route Fingerprinting

We assume that there are N + 1 peers in the system, and each of them samples
n < N others to create routes. (We assume nodes do not create routes through
themselves.) Assume an adversary determines k < n nodes on a particular route.
How many peers on average will know all k nodes, and therefore are possible
initiators of this route?

Each node can build up to
(
n
k

)
k-tuples out of a maximum of

(
N
k

)
that could

exist in the system. Therefore any peer knows those k nodes with probability
p =

(
n
k

)
/
(
N
k

)
.1 We define an indicator random variable Ii for each node i that

takes the value one when this is the case, and zero otherwise. The expected
number of nodes that could be initiators is Ak = E[

∑N
i=0 Ii] which is at most:

Ak = E[
N∑

i=0

Ii] ≤ (N + 1)
nk

Nk

(
N

N − (k − 1)

)k

≈ nk

Nk−1
, when

k − 1
N

→ 0 (1)

Proof. We start by the definition and apply linearity of expectations.

Ak = E[
N∑

i=0

Ii] =
N∑

i=0

E[Ii] (2)

= (N + 1) · p = (N + 1) ·
(
n
k

)

(
N
k

) =
(N + 1)n!(N − k)!

N !(n − k)!
(3)

≤ nk(N + 1)
(N − k + 1)k

(keep max. and min. values.) (4)

= (N + 1)
nk

Nk

(
N

N − (k − 1)

)k

(5)

Take the limit lim k−1
N →0

(
N

N−(k−1)

)k

= 1 to conclude the proof.

1 An equivalent combinatorial formulation is p =
(

N−k
n−k

)
/
(

N
n

)
.
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2.3 Anonymity Loves Company, But Hates a Big Crowd

What does this attack mean in practice? As expected, if the adversary cannot
observe any nodes on a path (k = 0), anonymity is perfect and A0 = N + 1.
This assumption imposes an unacceptably weak threat model.

The first realistic threat model is for the attacker to be the receiver of the
communication, and thus to observe just one node in a path, the final one. We
expect that given this information (k = 1) there are on average A1 ≈ n nodes
in the network that could have been the initiators. This is of some interest since
it is equal to the number of candidates if the network were split into N

n smaller
networks of equal size n, in which all nodes knew all other nodes. In case the
adversary controls, and does not merely see a connection originating from the
last node, they can associate A2 ≈ n2/N initiators (the final node and the
penultimate node on the path) with each incoming link (since k = 2).

Next assuming that the adversary controls the two last nodes on a path (but
not the first few). What is the expected number of nodes that could have been
the initiator? The two corrupt nodes know that the initiator must have sampled
them, as well as the previous node, and therefore k = 3. The number of possible
initiators is A3 ≈

(
n
N

)2
n, and in general for k > 1 we have that Ak < n, which

means that the security of the system will always be worse than if the networks
were simply partitioned into smaller cliques.

This attack, and its associated analysis, prove two key intuitions. First it
illustrates again, that for some threats the larger the network the less security
we get. As N grows the fraction n

N becomes smaller, and in turn the number of
candidate nodes that could have created any particular route becomes smaller.
Similarly to the predecessor attack against crowds2 we see that increasing the
number of potential senders does not automatically increase anonymity if the
system does not ensure that the anonymity sets are constituted using all of
them—the route fingerprinting attack illustrates that anonymity may in fact
decrease.

Second, one may take a step back and ask “does this attack really matter for
onion-routing-based systems?” Onion routing only preserves anonymity against
a partial adversary, as long as the first and last node are not compromised [22].
This means that with probability c2 the system provides no anonymity at all,
where c is the fraction of compromised nodes in the network. On the other hand
a route fingerprinting attack requires k ≥ 2 to be truly effective, i.e., to reduce
anonymity below the effect of simply splitting the network. The most obvious
way for the adversary to achieve this is to compromise at least the final node. If

2 The predecessor attack was first described and analyzed in the original crowds
paper [14], and that design provably prevented predecessor attacks on persistent
crowds. However, it was later shown that a predecessor attack was possible when
crowds reformed, i.e., every time someone joined a crowd. The same work that un-
covered this attack also first observed that anonymity vs. this attack decreases as
the crowd size increases [19]. Further analysis of predecessor attacks on crowds and
other systems was done by Wright et al. [25].
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the final node is corrupt, there is still some anonymity left if n2 >> N , even if
the sets of known nodes for each participant are available to the adversary.

To make attacks more effective, more nodes on the path need to be compro-
mised. For short paths (l = 3), this attack is no more likely than attack through
the normal running of the system. For longer paths, fingerprinting can be used
in conjunction with timing analysis, to break the security of paths that start
with an honest node. As an example consider an adversary that controls the
second and last node on a long path. They are able, using timing analysis, to
infer that the two corrupt nodes belong to the same path, and apply finger-
printing to reduce the number of candidate initiators to A5 (they can identify
five nodes known by the initiator: the two dishonest ones, and the three honest
nodes surrounding them.) Even for paths of length 3, fingerprinting combined
with ordinary correlation attack is slightly more effective than correlation alone.

The probability of two or more corrupt nodes being on the path, including a
last corrupt node is c(1 − (1 − c)l−1). This is always higher than the probability
of compromise (c2) through controlling the first and last node. In such cases
the initiator set can be narrowed down to A3 or fewer nodes, depending on the
positions of the corrupt nodes on the path. This demonstrates that fingerprinting
does lead to weaker security for onion-routing networks.

2.4 Better to Have Nothing to Do with Each Other Than to Stay
Together in Ignorance

Tor [6] is the current widely-deployed-and-used onion-routing network. Concern
about knowledge-based partitioning has deferred any deployment within Tor of
a system that gives clients only a partial list of nodes in the network despite the
usability, network load, and other issues that have come with maintaining and
distributing the increasingly large list to every Tor client. As we have seen, to
avoid such knowledge-based attacks the design of Tarzan actually moved in the
other direction, towards requiring clients to know the full list.

Our results apply to peer-to-peer versions of onion routing such as Tarzan.
In the client-server setting of Tor, the number of clients C is a few orders of
magnitude larger than the number of servers N . In that case the number of
candidates given k servers on the path is Ak ≈ (n/N)k ·C. This further increases
anonymity when only the last server is compromised (making k = 2), hence
architectures that allow such systems to scale should not be discarded solely
because of the route fingerprinting attack.

To be concrete, at the time of writing, Tor has an estimated 200000-500000
clients and around 2000 routers (server nodes). Suppose we would like to main-
tain as a security parameter with respect to exit-node route fingerprinting an
anonymity set size of 50000. Then, using a conservative number of clients, each
one should know about half of the routers. However, note that one could parti-
tion both the client set and the network in four such that all clients in a partition
know all 500 nodes in one clique and still produce the same resistance to route-
fingerprinting by the exit node. This analysis is too simple and overlooks the
fact that nodes are not all the same in Tor: they carry widely differing numbers
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of circuits (paths) and amounts of traffic; some serve as persistent entry nodes
for clients; only about a third are exit nodes, etc. Our analysis illustrates that
while scaling such systems can maintain adequate anonymity in the face of route
fingerprinting, splitting the network outright may be more desirable.

However, there remain too many concerns for this to be a recommendation in
practice: one must securely split the network and clients so that no single author-
ity can take advantage of the splits, and the basic c2 probability of end-to-end
compromise is still affected by network size, etc. To underscore this last limita-
tion let us revisit the analysis of the current Tor network with an anonymity-set
security parameter of 50000 clients. Note that the same result as above applies
if the client set is partitioned into four even sets of 50000 and, instead of being
partitioned evenly, the node set is partitioned into three sets of 10 nodes each
and one set of of 1970 nodes. There is no epistemic attack because each client
in each set of 50000 knows all the nodes in its assigned partition, but it is much
easier for an adversary to monitor all the network connections of ten nodes than
the five hundred that would result from an even partition.

Relatedly, onion routing would appear to benefit from a move to a more
peer-to-peer design for all of the reasons that make such designs desirable. How-
ever, the above shows that a client-server design has some inherent anonymity
advantages over a peer-to-peer design, and the assumption that a peer-to-peer
architecture would facilitate further scaling up and therefore improve anonymity
cannot be justified in general. Specific proposals for P2P designs and deployment
strategies thus need to be examined closely to determine if there are indeed
anonymity benefits, or at least acceptable anonymity costs.

When fingerprinting is deployed on mix systems instead of onion routing,
which are secure with probability 1 − cl, it often allows an adversary to de-
anonymize users much faster than before, and this should be considered a threat.
So, in practice, one is not advised to use a Tarzan-like selection strategy for high
security mix-based anonymous communications. In case high levels of security
are sought, a second attack that leverages the limited knowledge of nodes, route
bridging, becomes of interest.

3 Route Bridging

“We also know there are ‘known unknowns’; that is to say we know
there are some things we do not know.”

Donald Rumsfeld — U.S. Secretary of Defense

Route bridging assumes that a passive adversary can put some nodes in a mix
network under surveillance. It is also relevant to strengthened onion routing
schemes that provide protection against correlation attacks, since it provides an
alternative method to link incoming and outgoing streams of traffic.

The key intuition behind bridging attacks is that the nodes constructing the
routes only know a fraction of all potential routers, as it was the case for the early
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Fig. 1. The setting of the bridging attack when R is the first node

versions of Tarzan. As a result not all combinations of incoming and outgoing
links to/from a router form valid paths—some of those are simply not possible,
i.e. no node knows all routers necessary to construct them. In the extreme case
some paths do not benefit from any anonymization at all, since for one input
link there is a unique possible output link. The key question regarding the route
bridging attack is to determine the probability of such a total compromise. It is
essentially an epistemic version of the n − 1 attack [17].

3.1 Bridging a First Node

We illustrate the attack first in the simplest setting, where an adversary tries to
bridge the first, presumably honest, node. In this case we consider w initiators
S0, . . . , Sw−1 that concurrently use the honest node R as the very first node in
their paths—and the adversary tries to infer the outgoing node N0, . . . , Nw−1 to
which each incoming stream corresponds. In the subsequent sections we gener-
alize our results to other settings.

Consider w incoming messages or streams, from S0, . . . , Sw−1 leading to w
outgoing messages to N0, . . . , Nw−1, passing through a mix R. (For convenience,
we will use ‘message’ generically below, but observations we make generally
carry over to streams as well.) Without loss of generality we assume that the
first sender S0 routes through the mix a message that is destined to node N0.
What is the probability this message is compromised by a route-bridging attack?
The link from S0 to N0 can be uniquely recovered, if one of two conditions is true
(and these are not exhaustive). Either the node S0 does not know any of the other
destination nodes N1, . . . , Nw−1, which we denote as Pr[S0 �→ N1, . . . , Nw−1]; or
none of the other senders S1, . . . , Sw−1 know the destination node N0, which
we denote as Pr[S1, . . . , Sw−1 �→ N0]. We bound the probability of a successful
attack, Pbridge, by:

(

1 − n − 2
N − 2

)w−1

≤ Pbridge ≤ 2
(

1 − n − 2
N − 2

)w−1

(6)
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Proof. First we calculate the two probabilities Pr[S0 �→ N1, . . . , Nw−1] and
Pr[S1, . . . , Sw−1 �→ N0]. Pr[S0 �→ N1, . . . , Nw−1] is the probability each dis-
tinct N1, . . . , Nw−1 is not in the set of n − 2 nodes that S0 knows and would
route through in this way (assuming that the nodes R, N0, and S0 itself are
excluded). Probability Pr[S1, . . . , Sw−1 �→ N0] represents how likely it is that no
other node from S1, . . . , Sw−1 has N0 in its set of n − 2 remaining nodes, after
excluding the router node R, as well as their actual outgoing link and the node
Si itself.

Pr[S0 �→ N1, . . . , Nw−1] =

(
(N−2)−(w−1)

n−2

)

(
N−2
n−2

) =
w−2∏

i=0

(

1 − n − 2
N − i − 2

)

(7)

Pr[S1, . . . , Sw−1 �→ N0] =
(

1 − n − 2
N − 2

)w−1

(8)

First we note that if i > 0 then
(
1 − n−2

N−i−2

)
≤

(
1 − n−2

N−2

)
which in turn

means that:

Pr[S0 �→ N1, . . . , Nw−1] ≤ Pr[S1, . . . , Sw−1 �→ N0] (9)

The sought probability Pbridge is in fact equal to the union of the events
described by the probabilities above. Trivially applying the union bound to
Pbridge = Pr[S0 �→ N1, . . . , Nw−1 ∪ S1, . . . , Sw−1 �→ N0], as well as the fact
that one of the probabilities is always larger than the other, we have that:

Pr[S1, . . . , Sw−1 �→ N0] < Pbridge < 2 Pr[S1, . . . , Sw−1 �→ N0] (10)

The proof can be concluded by substituting for Pr[S1, . . . , Sw−1 �→ N0].

This attack assumes that the adversary’s only information, besides which nodes
are known to which system participants, is the router concerned and the nodes
providing input and receiving output for a given mix batch. This makes the
attack applicable to bridging the first node in the path. The adversary need
only know the knowledge set of the target S0 for the lower bound we have
stated to hold; she need not be aware of which nodes are known to the other
Si. Alternatively, she may only be aware of the knowledge sets of the other Si

and not that of S0. Note that the nodes Nj �= N0 need not be distinct for these
results to hold. In fact they could all be the same node.

Looking at this simple scenario it is clear that as the number of streams
or messages crossing a router increases, the probability that any of them is
compromised through this route bridging attack decreases. But what order of
magnitude should the batch size w be to neutralize the attack? We note that
the probability of security is 1−Pbridge < (w−1)(n−2)

N−2 (by Bernoulli’s inequality),
so if the system has to have a chance of providing full security that is close to
optimal we should require 1 − ε < (w−1)(n−2)

N−2 , which provides a lower limit
on w:

w >
(1 − ε)(N − 2)

n − 2
+ 1 (11)
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So to even start contemplating the possibility of full security the number of
mixed messages or streams should be O(N−2

n−2 ). In a fully peer-to-peer system
the number of streams multiplexed is only O(l), where l is the length of paths in
the system. This is usually a small number, way too small to guarantee maximal
security.

In low-latency systems like Tarzan or Tor, the threat of route bridging is likely
to be dominated by the ability to correlate streams in two locations through
simple timing and packet counting for the foreseeable future [13, 18]. In proper
mix systems, however, it could prove to be a near-term practical threat. The
batch size w provides some guidance on how to set the parameters of each mix
to mitigate against the route bridging attack.

3.2 Building Bridges Further Down the Road

“Confusion will be my epitaph, as I crawl a cracked and broken path.”

King Crimson — Lyrics to “Epitaph”

Bridging could also be applied to the final router in a path. One would, however,
need to assume that the adversary knows which ultimate destinations are known
to whom. For the anonymity systems we have been considering, these destina-
tions are not assumed to be part of the network; so this information would not
be available by the means we described above. Feigenbaum et al. [7] present
such an analysis of what a partial network adversary who knows the a priori
distribution of ultimate destinations for every client of an onion-routing network
can learn by observing the (fully-discovered) network.

What if messages entering router R were from initiators known to the adver-
sary? Note that here the chooser of routes are not the intermediary nodes Si.
Thus it’s not the nodes Nij unknown to Si that we are considering; it’s the nodes
unknown to the initiating peer that routed from Si to R to Nij . If all paths have
been compromised for at least k nodes prior to R, then the bound becomes even
tighter in this combination of fingerprinting and bridging.

(

1 − n − k − 1
N − k − 1

)w−1

≤ Pbridge ≤ 2
(

1 − n − k − 1
N − k − 1

)w−1

(12)

This situation of so many paths being fully known for more than one hop in
their routes is perhaps unlikely; however, we can also determine lower bounds
in case just the path of the message entering R from router S0 and exiting to
router N0 is known to the adversary. Again assuming that the k nodes prior to
R in this path are compromised, we can determine Pr[S0 �→ N1, . . . , Nw−1]. We
cannot say anything about Pr[S1, . . . , Sw−1 �→ N0] in this case because we do
not know about the path nodes chosen prior to the Si for i �= 0 and cannot trace
each back to a unique initiator. For this reason, we cannot give an upper bound.
But we can give a lower bound.
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Pbridge =
w−2∏

i=0

(

1 − n − k − 2
N − k − i − 2

)

≥
(

1 − n − k − 2
N − k − 2

)w−1

(13)

Bridges without compromise anywhere you like. If the path up to R is not
compromised the attack becomes less likely to succeed but is still possible in some
cases. As before we assume that a node R receives messages from nodes S0...w−1

and outputs those messages to nodes N0...w−1. Without loss of generality we
assume that the message from S0 is routed through R to N0 and try to calculate
the probability the adversary can infer this without any doubt.

Unlike our assumption so far, the adversary does not a-priori know which set
of w initiators are responsible for the w streams going through node R. Our first
observation is that the number of potential initiators, N ′, for each incoming link
is much smaller than the total N + 1 nodes, since they are assumed to know at
least nodes Si and R. According to our results on the fingerprinting attack we
expect about A2 = E[N ′] = (n/N)2 · N potential initiators for each link.

As before we try to calculate the probability an adversary can bridge over
node R and uncover the path S0 → R → N0. This is possible if either :

– there is no initiator that knows nodes S0 and R and other destinations
N1...w−1. We denote this as
Pr[(S0 → R) �→ N1, . . . , Nw−1|S0 → R → N0, N

′]
or,

– there are no initiators that know nodes R and N0 as well as any of the nodes
S1...w−1. We denote this as
Pr[(N0 ← R) �← S1, . . . , Sw−1|S0 → R → N0, N

′].

The probability of a successful bridging attack in this context is:
(

1 − n − 2
N − 2 − (w − 2)

)(w−1)(N ′−1)

≤ Pbridge ≤ 2
(

1 − n − 2
N − 2

)(w−1)(N ′−1)

(14)

Proof. We first calculate the probability
p1 = Pr[S0 → R �→ N1, . . . , Nw−1|S0 → R → N0, N

′] that no other node knows
S0, R and any of the other destinations N1, . . . , Nw−1. This means that the other
N ′−1 nodes have not chosen any of N1, . . . , Nw−1 as part of their remaining n−2
nodes. The probability of this happening for any of them is

(
N−2−(w−1)

n−2

)
/
(
N−2
n−2

)

and there are N ′ − 1 independent nodes for which this must hold. Hence,

p1 = [Pr[S0 �→ N1, . . . , Nw−1]]
N ′−1 =

[(
N−2−(w−1)

n−2

)

(
N−2
n−2

)

]N ′−1

(15)

Now note that p2 = Pr[N0 ← R �← S1, . . . , Sw−1|S0 → R → N0, N
′] is in fact

equal by symmetry to p1. Since bridging is successful if either of those holds, by
the union bound we get:

[(
N−2−(w−1)

n−2

)

(
N−2
n−2

)

]N ′−1

≤ Pbridge ≤ 2

[(
N−2−(w−1)

n−2

)

(
N−2
n−2

)

]N ′−1

(16)
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The lower bound is simply derived by assuming that only one of the two events
takes place.

We can loosen a bit the bounds in order to get some intuitions about how
the different quantities influence the probability of successful bridging. We note
that:

(
N−2−(w−1)

n−2

)

(
N−2
n−2

) =
w−2∏

j=0

(

1 − n − 2
(N − 2) − j

)

= α (17)

By assigning to the fraction in α the maximum and the minimum values j
assumes we get:

(

1 − n − 2
N − 2 − (w − 2)

)w−1

≤ α ≤
(

1 − n − 2
N − 2

)w−1

(18)

We substitute the derived inequalities for α into eq. 16 to derive our final
bound on the probability of successful bridging in eq. 14. Intuitions about its
behaviour are present in the next section.

3.3 But Can the Army Walk Across It? Building Bridges in the
Real World

In the previous sections we described bridging and derived analytic bounds when
the first node is compromised, when paths from all or from just a specific source
to an honest mix are compromised, and even for the more general case where an
adversary tries to bridge an arbitrary honest node in the network. Let us now
examine the relevance of this attack to real world systems.

The first difficulty in applying the attack relates to the threat model it as-
sumes. A local passive adversary is required to observe all incoming and outgo-
ing messages or streams around the node to be bridged. Mix systems usually try
to protect against such adversaries, but stream-based anonymization systems,
which are already susceptible to timing attacks, do not. Yet even in the case of
stream-based systems, such as onion routing (including Tor), an adversary might
find it advantageous to use bridging if possible: it only requires connection in-
formation, rather than the exact timing of packets traveling in the network. If
applicable, bridging requires several orders of magnitude less information about
each link and node than timing attacks—and this information can be inferred
through sampling network packets [11] or observing short windows of traffic.

A global passive adversary may be required to discover the sets of nodes known
by each initiator in the system, depending on the exact network discovery proto-
col employed. Tarzan proposed the use of a DHT that can easily be infiltrated by
a few nodes to observe all other nodes’ activity. Current widely-used distributed
anonymizing systems (Tor, mixmaster, mixminion) use a distributed but more
centralized directory architecture to provide routing information. If any of these
were to move away from assuming that every client in the network knows all
servers, it could be subject to epistemic attack if just one of the directory servers
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is dishonest. It may be possible to bootstrap off using a core anonymizing net-
work known to all clients that could be used to obtain node information from
directories or to use private retrieval or other techniques to counter these. How-
ever, more research is needed to determine if there are scalable, efficient, and
secure techniques for partial network discovery in any directory system from
centralized to diffusely distributed. In case node discovery is unobservable by
the adversary, the attacker would have to resort to monitoring the network to
infer the sets of nodes know by each initiator. Distributing such unobservable
sets for each client is an open research problem.
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Fig. 2. The effectiveness of bridging given a compromised or uncompromised path.

The analytic bounds provided can be of great help to attackers or to sys-
tem designers wishing to evaluate security, but they offer little intuition into
the effectiveness of the attack in a realistic setting. To illustrate we assess the
probability of success of bridging in a network where each node knows n = 1000
others and the batch size of relays is w = 150. Figure 2 plots this probability
as the total number of nodes in the network N grows. As expected, the lower
bound for the probability of success if the initiator of the connection is known
(the compromised path case) is always greater or equal to the case where the
initiator is not known. If the path has not been linked unambiguously to an
initiator (uncompromised path case), then the probability is lower according to
the expected number of nodes that could be initiators of an observed link. Since
N > n2, we expect the number of such initiators to be at most one, and the
probabilities of success for the two cases are equal for average N ′.

Figure 2 illustrates clearly that the probability of bridging is not negligible: if
nodes know only 1-in-500 other nodes, it is already higher than 1/2 even if the
initiator is unknown. When the initiator is known the probability of compromise
rises above 3/4. Furthermore those are lower bounds, and the adversary is very
likely to be able to do better in practice.
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The analysis of bridging we present is centered around the probability of
successful attack Pbridge. This represents the probability that an adversary using
the techniques describe is able to infer with absolute certainty the link between
an incoming and outgoing message or stream. Even when this is not possible,
bridging will lead to a severe reduction in anonymity. Despite the theoretical
number of output streams being w, an adversary is very likely able to reduce
the candidate output streams, even if they never manage to isolate a single one.
This can be used to reduce anonymity and to skew the probability distributions
describing who might be the sender or receiver of a message.

Similarly, an adversary with some incomplete information about which nodes
are known to which users might still perform some variant of bridging to reduce
anonymity. The adversary could also perform more sophisticated variants on
bridging. For example there may be relations between the sets of nodes known
to the other originators of streams that affect what patterns are possible amongst
the observed streams that are not attacked and what can thus be inferred about
the attacked stream. In that sense, our Pbridge actually represents only the sim-
plest form of bridging attack. Bridging can also be performed alongside other
attacks, integrating different constraints of anonymous paths like length, or the
lack of cycles. This will increase the probability of successful bridging. Measures
of anonymity [16, 5] taking into account those effects could be used to quantify
any reduction in anonymity, but deriving analytic results in this setting might
be hard. This is a promising avenue for future research.

4 Conclusion

In this paper we have examined effects of partial network knowledge on
anonymity, based on both what is known and what is not known by those build-
ing routes through an anonymity network.

We presented a simple analytic bound on route fingerprinting, which is based
on what route builders know about the network, and introduced a new attack,
route bridging, which adds consideration of what clients do not know about the
network. We also proved analytic bounds for different cases of route bridging.
We illustrated our results on the initially published Tarzan design, which we
found to be vulnerable to our attacks.

Successful attacks on Enigma in WWII were based on a property of the device
that it would never produce an output letter that was the same as its input. Using
this “nonoccurrence” statistical analysis made it possible to break encrypted
messages. With the introduction of route-bridging attacks we show again that in
security one must pay attention not only to what can happen but also to what
cannot happen.

Our results also suggest that any attempt at scaling anonymity networks by
limiting node discovery to a level below full network discovery should be carefully
compared to simple partitioning as a first test. While it may be possible to
maintain anonymity by such limitation, one may obtain better results, at least
in this regard, simply by partitioning. On the other hand, our results also showed
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that the threat of epistemic attack is substantially mitigated in a client-server
architecture such as that of Tor, and there is reason for cautious optimism that
this threat will not preclude scaling of the design.

Wright et al. [24] suggested that to protect against passive logging attacks
one might be better off choosing both entry guards and exit guards. For Tor
and other three-hop anonymity systems, however, random middle nodes could
do route fingerprinting with k = 3 and in fact a very small n as well. That
is, the middle node will see both ends; so k = 3. And, because guards are
used at both ends, any client will be choosing entry and exit nodes from a
small persistent set. Current entry guards for Tor start with a default of three
nodes. Which entry and exit guards are chosen by a client would not be directly
apparent to the adversary from node discovery or from observation of a single
route selection but would instead have to be discovered by observing repeated
connections. An adversary owning a single node was able to quickly uncover
entry guards by watching repeated connections (at least for circuits used by
hidden services) on the live Tor network of several hundred nodes that existed
in early 2006 [13]. Clearly this requires further examination. As we have noted,
having orders of magnitude more clients than servers substantially diminishes
such threats for Tor itself. But, vulnerability would grow if the ratio of clients
to servers were to drop and the size of the network to persist or grow. This
seems to be a basic difficulty for pure peer-to-peer anonymity designs unless we
can anonymize network discovery without having the anonymization that the
network can provide once discovered.
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Abstract. Mobile computer users often have a false sense of anonymity
when they connect to the Internet at cafes, hotels, airports or other public
places. In this paper, we analyze information leaked by mobile computers
to the local access link when they are outside their home domain. While
most application data can be encrypted, there is no similar protection
for signaling messages in the lower layers of the protocol stack. We found
that all layers of the protocol stack leak various plaintext identifiers of
the user, the computer and their affiliations to the local link, which a
casual attacker can observe. This violates the user’s sense of privacy and
may make the user or computer vulnerable to further attacks. It is, how-
ever, not possible to disable the offending protocols because many of
them are critical to the mobile user experience. We argue that the most
promising solutions to the information leaks are to filter outbound data,
in particular name resolution requests, and to disable unnecessary ser-
vice discovery depending on the network location. This is because most
information leaks result from failed attempts by roaming computers to
connect to services that are not available in the current access network.

Keywords: Privacy, anonymity, mobile computing, wireless networks,
network location awareness.

1 Introduction

When mobile computer users connect to the Internet at wireless hotspots, cafes,
hotel rooms, airport lounges and other public places, they tend to think that
nobody can recognize them. Some are aware that sophisticated techniques, such
as correlating the appearances of the network interface card’s MAC address or
other statistically unique information, could be used to trace them. Few know
that their computer is openly broadcasting information about them to the local
network, including usernames, computer names, and identifiers linkable to their
employer, school or home. In this paper we explore the identifiers leaked by
mobile computers to the access network.

Our attacker is a passive observer at the same local link, who has no resources
for making global observations or skills for sophisticated analysis of the data but
who is curious enough to capture network traffic and to see what other network
users explicitly tell about themselves. The attacker may be operating the local
network or access point, or he may be just another user in the same network.

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 167–186, 2008.
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The user’s own computer is not malicious but leaks information accidentally or
because of conflicting design goals. We focus on business users whose computers
are members of a managed domain.

There is no great drama in being identified in a public place. Most people,
however, prefer not to wear a name tag after leaving the office and enjoy the
privacy and protection afforded by the relative anonymity. Sometimes, announc-
ing a person’s name or affiliation could expose them to further attacks. This
vulnerability also applies to computers: a random computer at a cafe is not par-
ticularly interesting to a hacker but one belonging to a well-known organization
might invite attacks.

Computers perform many tasks automatically without the user’s knowing;
things just work. The automatic tasks often involve the discovery of network
services, which means sending packets to the network. These packets usually
identify the service and often also the user. It should be noted that the auto-
matic actions happen by design: most users would probably not want to see
any additional dialog windows asking for their permission to go ahead, and dis-
abling the automatic services would destroy the seamless mobility experience
that software vendors are hard trying to create.

In this paper, we are mainly interested in identifiers in signaling protocols,
packet headers and communication metadata, that is, data that cannot be easily
encrypted at the application level. It is often falsely assumed that end-to-end
encryption solves all privacy issues apart from traffic analysis. In real networks,
not all communication is end-to-end. There are many protocols that are executed
with the access network and with global network infrastructure. For example,
the DHCP and DNS protocols cannot be protected by encryption. Yet, these
protocols reveal all kinds of information about the mobile host. Much work has
been done on randomizing the most obvious permanent identifiers (MAC and
IP addresses), and, on the attack side, on fingerprinting mobile hosts based on
statistical characteristics. In this paper, we consider more explicit user, computer
and organization identifiers such as usernames. Clearly, randomized addresses
only help privacy if the higher-layer identifier leaks are also controlled, and the
statistical attacks matter only if there is no easier way to identify the target.

We use domain-joined Windows XP and Vista laptops as examples through-
out the paper because they are common in business use and perform many tasks
automatically. Domain members have more identifiers and credentials than typ-
ical standalone computers and they tend to access more services. Thus, there is
more information that could potentially be leaked.

This paper makes the following contributions: we identify network chatter by
mobile computers as a major threat to mobile user privacy, develop a tool for
detecting identifier leaks, and use it to examine network traces captured from
business laptops. We analyze the causes of the leaks and describe a solution based
on network-location awareness. The lessons of this paper could be summarized
by saying that using a laptop computer is akin to wearing a name badge that
reveals the person’s identity and affiliation, and that not telling everyone who
you are turns out to be surprisingly hard because there are so many name badges
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in places that you never knew about. We argue that most of the leaks are caused
by unnecessary network chatter, mainly failed attempts at name resolution and
server connections, which could be avoided by designing software to be aware of
the network locations.

The rest of the paper is organized as follows. We overview related work in
Section 2. Section 3 introduces the analysis tools. Section 4 details the sources of
identifier leaks. In Section 5, we analyze the findings. Section 6 suggests solutions
to the problem and Section 7 concludes the paper.

2 Related Work

Information leaks from mobile computers
Information leaks caused by unencrypted network traffic have been noted many
times in the literature. There are few systematic studies, however. Kowitz and
Cranor [KC05] study how user attitudes change when they are explicitly shown
plaintext strings from the network traffic. The strings are mostly application
data such as email, instant messages and web searches, but the paper also men-
tions NetBIOS as one source of information. We see the information leaks as a
technical problem rather than as a question of user awareness.

Saponas et al. [SLH07] bring attention to ubiquitous computing devices which
can be traced by their unique identifiers or reveal which content the user is
downloading. Akritidis et al. [ACL+07] mention RSS subscriptions, plaintext
instant messaging, web-browser cookies, and the hostname in the DHCP request
(see Section 4.3) as means for identifying mobile users. Pang et al. [PGM+07]
suggest confidential discovery of wireless access points.

DNS was originally designed for fixed networks but is increasingly used as a
reachability mechanism for roaming hosts. Guha and Francis [GF07] point out
that dynamic DNS can be used to query and map a mobile host’s location. Broido
et al. [BSF06] discuss unnecessary DNS updates for private address ranges, which
may also leak information about the host to the foreign access network. In this
paper, we discuss more basic operations of DNS and observe that most privacy-
compromising data is revealed unnecessarily.

Anonymity and routing
Anonymity in communications networks has many meanings. Traditionally, the
main goal has been end-to-end anonymity, i.e., to hide the client’s identity from
the servers or peers to which it connects over the Internet. Anonymous routing
systems, such as the mix networks introduced by Chaum [Cha81], hide the con-
nection between senders and recipients of messages also from third parties who
are assumed to monitor network traffic globally. Onion routing, as described
by Syverson et al. [SGR97] extends the idea to hidden servers, i.e., to hiding
the recipient from the sender. These mechanisms assume a very strong attacker
model and are expensive to implement, yet tend to be fragile against analysis
methods that take advantage of the non-ideal characteristics of the underly-
ing technologies. The most common applications for anonymous routing are in
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content distribution (e.g., Freenet by Clarke et al. [CSWH00]) and anonymous
web browsing and censorship resistance (e.g., Tor by Dingledine et al. [DMS04]),
where there is a strong incentive for hiding the identities of the communicating
parties. Application-specific anonymity systems include remailers and anonymiz-
ing web proxies (e.g., Mixmaster by Möller et al. [MCPS03] and Crowds by Reiter
and Rubin [RR98]). Simple HTTP proxies and native address translation (NAT)
also provide some privacy benefits. The same routing mechanisms can be used
for location privacy, i.e., to hide a mobile computer’s location from its peers. Mo-
bility protocols, like Mobile IPv6 [JP02], achieve some level of location privacy
by routing all packets to and from the mobile via a fixed proxy.

Despite the number and diversity of end-to-end anonymity mechanisms, they
share the common goal of hiding the mobile’s identity or location from peer nodes
over the Internet. Our work differs from this in that we want to protect against
observers at the mobile’s local link. Our attacker model is also different in the
sense that the attacker is assumed to be present only at the access network.

Randomized identifiers
Communications protocols use various kinds of identifiers and addresses that
can act as identifiers. For example, the MAC address of a network interface is a
globally unique identifier. IPv6 addresses often have the MAC address embedded
in their bits in order to guarantee uniqueness [TN98]. A common solution to the
issues caused by unique identifiers is to replace them with random, periodically
changing values. There is a standard way of generating IPv6 addresses with a
pseudo-random number generator [ND01]. Similar randomization has been sug-
gested for the MAC address by Gruteser and Grunwald [GG03b] and many
others. The identifier changes have to be carefully timed, with possible silent
periods, to maximize anonymity protection and to minimize disruption to com-
munications, which is also noted by Beresford and Stajano [BS03] and Jiang et
al. [JWH07]. Clearly, unencrypted higher-level identifiers such as IP addresses
have to be changed at the same time as the MAC address. Mobility protocols
can be used to guarantee continuity of end-to-end communications over the iden-
tifier changes, e.g., as suggested by Lindqvist and Takkinen [LT06]. Since the
issues with IP and MAC addresses have already been extensively covered in the
literature, we will focus on other identifiers.

The level of anonymity provided by such mechanisms can be measured as the
size of the anonymity set or as entropy (see Sweeney [Swe02], Serjantov and
Danezis [SD02] or Dı́az et al. [DSCP02]), both of which measure the level of
uncertainly about the identity of a node. Given the number of users and mobile
devices on the Internet, the hope is that the uncertainly will be very large. The
academic literature has concentrated on theoretically strong or at least mea-
surable guarantees of anonymity and location privacy. The work presented in
this paper differs from the literature in that we consider a rather more elemen-
tary goal: not explicitly telling everyone who you are, which turns out to be
surprisingly hard.
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Host fingerprinting
Fingerprinting of mobile radios based on their non-ideal characteristics is an old
military intelligence technique which enables tracing the movements of individ-
ual stations. The same kind of analysis has been applied to wireless LAN cards,
e.g., by Gerdes et al. [GDMR06]. The analysis of radio signals requires sophis-
ticated hardware and skilled operators, however. A more practical approach is
to fingerprint hosts based on their higher-level characteristics such as the MAC-
layer capabilities and configuration, which can be combined with network-layer
traffic-analysis data for better accuracy (Franklin et al. [FMT06], Greenstein et
al. [GGP+07] and Pang et al. [PGG+07]). Some hardware characteristics, such
as clock skew and temperature variations (Kohno et al. [KBC05] and Murdoch
[Mur06]) can be used to fingerprint hardware remotely. The same techniques
could be used to identify devices on the local link. In effect, the hardware and
communications fingerprint becomes a unique identifier for the device and user.

Our work differs from the device fingerprinting in that we concentrate on
explicit identifiers instead of implicit ones. For example Kohno at al. use the set
of peer IP addresses as an implicit identifier that is treated as a set of numbers.
We, instead, record the DNS names to which the host connects and look for ones
that reveal the client identity or affiliation.

Information flow
One approach to preventing information leaks is to analyze information flow in
the system. In the terminology of multi-level security, the user identifiers are
high input data, from which information should not leak to the low output, i.e.,
messages sent to the network. By proving information-flow properties, such as
non-interference [GM82], we could be certain that the system does not leak the
high data. While such models remain theoretical, there has been progress, e.g.,
in the language-based proof techniques of Sabelfeld and Myers [SM03].

On the more practical side, we can trace the information flow dynamically
in a running system. Most such mechanisms aim to protect system integrity,
rather than confidentiality of data. In the Perl programming language, untrusted
inputs can be marked as tainted and the tainting is propagated to any values
derived from them. Chow et al. [CPG04] use data tainting in a simulated system
to analyze the lifetime of confidential data, such as passwords, in the system
memory while Zhao et al. [ZCYH05] show evidence that taint propagation can
be traced in real time in a production system. Yumerefendi et al. [YMC07]
suggest a clever way of detecting data leaks by executing a parallel copy of the
process with random bits replacing the confidential data; if the outputs differ,
some information is leaking. The same techniques could be used to flag identifiers
and other anonymity-compromising data and to detect whether they are being
sent to the network. We consider data tainting a potentially useful approach;
however, the solutions suggested in this paper are even more practical in nature.

Privacy policy and preferences
Another approach to privacy is not to discuss the technology but the policies. In
addition to legal frameworks, there are several technical policy frameworks for
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Fig. 1. Data flow between the analysis tool components

location privacy [Zug03][CJBMM04][GG03a][Pet02] and languages for express-
ing preferences on the disclosure of personally identifiable information [Cra02]
[AHK03]. We do not explicitly discuss privacy policies or user preferences in this
paper. In Section 6, however, we suggest an implicit privacy preference mecha-
nism that interprets any networking functionally explicitly enabled by the user as
a policy decision.

3 Tool for Analyzing Network Chatter

We initially became concerned over information leaks to the access network when
looking at network traces. As we started to comb through them for previously
unknown issues, it soon became apparent that a more systematic approach was
needed. For this reason, we developed a tool for detecting leaked identifiers
in network traces. The tool is defensive in the sense that it can only be used
to analyze leaks from one’s own computer. This limitation allows us to find
offending user, machine and organization identifiers in places that have not been
previously catalogued. We have previously used a similar tool to detect user
identifiers in electronic documents [AKR06].

The general structure of the tool is shown in Figure 1. It consists of two mod-
ules: Identifier Collector and Capture Analyzer. The Netmon network monitor
is used for recording network traffic and for viewing the discovered information
leaks in their context.

3.1 Collecting Personal Identifiers

The Identifier Collector gathers the user’s personal identifiers, which will then
be used as search strings in the capture file analysis. It finds identifiers from the
local computer and from the active directory (AD), which is a directory service
for Windows computers. The identifiers include the username, machine name,
NetBIOS group, domain name, globally unique identifiers (GUIDs), names of
various domain-specific services, as well as less obvious identifiers such as postal
address and telephone number. An alternative would be to let the user type in
the sensitive identifiers but we wanted the tool to be as automatic as possible.
In addition to improving usability for non-expert users, automation makes the
results reproducible.
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3.2 Capture-File Analysis

The Capture Analyzer module searches for the identifiers in a network capture
file. We use two different search algorithms for this purpose. The main difficulties
were that the format of the captured packets is complex, variable and sometimes
unknown, and that we would like to detect information leaks in any protocol layer
or data field.

Data formats
One approach to the search would be to parse the packets in the same way as in
network monitoring software such as Ethereal, Wireshark or Netmon and then
search each data field separately, taking into account its data format, for the
offending identifiers. A limitation of this approach is that we might miss some
data fields that are not correctly identified by the parser. For this reason, we
decided to search through the raw packet data using algorithms that can handle
a large number of data and text encodings. We parse the packets and pinpoint
any suspicious protocol fields only after detecting identifiers in the raw packet
data. The tool offers two different tradeoffs between speed and completeness of
the search.

Simple string search
The Aho-Corasick algorithm [Aho75] performs a fast text search for multiple
search strings. We encode textual search strings, such as a username, with a
number of common string encodings: ASCII, Unicode UTF8, UTF16 in big- and
little-endian byte order, and UTF32. The search is case-insensitive and ignores
accents and common character variations. Thus, for example, the character val-
ues aàáâãä̊aAÀÁÂÃÄÅ are all considered matches for each other. Short strings
are also encoded as NetBIOS identifiers, which have their own peculiar format.
Additionally, we look for copies of the MAC address outside the Ethernet header
and for Windows GUIDs of the user, computer and domain. Binary identifiers
are treated as special cases based on their specific characteristics. The number of
encodings has been tuned to keep the tool speed acceptable for fast interactive
use.

Regular expression search
The second string search algorithm aims to perform a more complete search
than the simple string search above, which was optimized for speed and not
assurance. With a slower search algorithm we wanted to detect any identifiers
that may be missed by the simple string search. Regular expressions provide
flexibility to support multiple layers of data encoding. We start with a simple
tree-shaped expression constructed from the original search strings and expand
this by replacing each character in the expression with its different encodings.
This is done recursively for multiple layers of encodings: upper and cases; accents
and other character variations; URL, XML and C escapes and numeric repre-
sentations; and, finally, Unicode and other character encodings. The resulting
regular expression is large but represents an even larger number of multi-layer
encodings of the search strings. Figure 2 shows a simplified example of how the
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original character: N

upper and lower case, accents: (n|ñ|N|Ñ)

various escape notations:
(n|(((\x?)|%|(&#?)| |-)0*((156)|(110)|(6e));?)|ñ|(((\x?)|%|(&#?)| |-)0*((361)|(241)|(f1));?)|N|(((\x?)|%|(&#?)| |-
)0*((116)|(78)|(4e));?)|Ñ|(((\x?)|%|(&#?)| |-)0*((321)|(209)|(d1));?))

ASCII, UTF-8, little and big-Endian UTF-16:
((00*6e)|((((00*78)?00*5c)|(00*25)|((00*23)?00*26)|(00*20)|(00*2d))(00*30)*((00*3100*3500*36)|(00*3100*3100*
30)|(00*3600*65))(00*3b)?)|(00*(3f|(c3b1)|f1))|((((00*78)?00*5c)|(00*25)|((00*23)?00*26)|(00*20)|(00*2d))(00*30)
*((00*3300*3600*31)|(00*3200*3400*31)|(00*6600*31))(00*3b)?)|(00*4e)|((((00*78)?00*5c)|(00*25)|((00*23)?00*
26)|(00*20)|(00*2d))(00*30)*((00*3100*3100*36)|(00*3700*38)|(00*3400*65))(00*3b)?)|(00*(3f|(c391)|d1))|((((00*
78)?00*5c)|(00*25)|((00*23)?00*26)|(00*20)|(00*2d))(00*30)*((00*3300*3200*31)|(00*3200*3000*39)|(00*6400*31))
(00*3b)?))

Fig. 2. Regular expressions for encodings of ‘N’

regular expression for one character of a search string is constructed. Because
of the expression size, the search is done with a non-deterministic automaton,
which means it consumes a lot of memory. We tuned the number of encoding
layers and their complexity to keep the memory consumption for even a large
set of identifiers below 1GB. The aim was to keep the search time under an hour
for large datasets.

3.3 Integration with Netmon 3

The Capture Analyzer works together with the Microsoft Netmon 3 network-
monitoring software. It takes as input a network capture file and a list of identi-
fiers and produces a Netmon filter that lists the matching packets. This is loaded
into Netmon for detailed manual analysis of the information leaks in the capture.
Currently, the tool can only be used for offline analysis.

3.4 Discussion of Completeness

It is rather difficult to assess the completeness of the search. We have enhanced
the tool to detect all classes of identifier leaks that we initially knew about,
suspected, or found by manual methods. The tool has some specific limitations,
however. It cannot find intentionally obfuscated information, which falls outside
our attacker model, and it cannot search encrypted data. Currently, we do not
search through compressed data or other encodings that do not respect byte
boundaries (e.g., Base64 and uuencode). Fortunately, such encodings are rarely
used in signaling messages below the application layer.

Since we look at the capture files as raw bytes and do not parse the packets, we
cannot detect data that spans across multiple packets. The most likely reason
for this to occur is when an identifier has been split into two TCP segments
and, thus, is non-contiguous in the packet capture data. In the future, we may
enhance the tool to support TCP segmentation. Fragmented IP datagrams could
pose a similar problem. We initially planned to implement defragmentation at
the IP layer but failed to do this because the sample data did not contain any
fragmented packets.
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Some false positives are produced by the case- and accent-insensitive search,
which means that 3- or 4-character names have some accidental matches in
binary files (e.g., “ẗIÑ̊a” would match “Tina”. The number of false positives
was acceptably small for the purposes of research. If the same algorithm is used
for routine monitoring, it would be easy filter recurring false positives. Another
class of false positives arises if the user is affiliated with an organization whose
name occurs frequently in network traffic (e.g., Google) or is a common word
(e.g., Time).

Active attacks are entirely beyond the scope of this paper. They are, however,
not as difficult to implement as one might first believe. In fact, it may be easier
for the attacker to induce the mobile computer into executing a specific protocol,
such as IKE or DHCP, than to sit passively on the network and wait for events
to occur spontaneously. We plan to continue this work in the direction of active-
attack analysis.

4 Information Leaks to Local Link

This section reports findings from the analysis of network traces collected at
various locations using domain-joined computers running Windows XP and Vista
and a range of client software that is commonly found on business laptops. The
analysis was done with the search tools described in the previous section.

4.1 DNS

The domain name system (DNS) is a directory service that resolves human-
readable host names into IP addresses. The literature (see Section 2) already
considers the privacy issues created by dynamic updates to the DNS. We look
at a more basic operation: name resolution.

DNS queries
Connecting to online services may reveal information about the client. We will
discuss examples of such services in the following sections. However, before con-
necting to almost any service, the client will resolve the DNS name of the server
using the local DNS in the access network. Consequently, the easiest way to
track the activities of a mobile computer is to record its DNS requests. For
example, if the computer connects to a VPN gateway of its organization (e.g.,
vpn-gw.contoso.com), a look at a DNS log is sufficient to identify the company.
The user may not be aware that many such queries happen automatically, with-
out an explicit user action.

Resolving private names
Many organizations use a private IP address range (e.g., 10.0.0.0/8) for their
internal network and a private DNS zone (e.g., *.private.contoso.com or *.con-
toso.local) to name the computers on the private network. The private names
can only be resolved by the local DNS server at the intranet and are not visible
from outside. DNS resolvers on client computers do not, however, know when
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they are in the intranet. Thus, a mobile computer may try to resolve a private
name when it is roaming outside the private network. The name resolution will
fail but the DNS request reveals the name of a server and organization.

Default suffixes
Since human users prefer to type short computer names (e.g., hobbit) rather
than fully qualified domain names (FQDN) (e.g., hobbit.sales. contoso.com.), the
resolver automatically appends default suffixes to the name. For example, when
resolving hobbit, the computer typically queries for hobbit.sales.contoso.com and
hobbit.contoso.com, in that order. Originally, there was a security reason for
trying the longer name and, thus, the more local name space first: it prevented
users from accidentally entering their password to a prompt presented by a more
remote host than the one they intended to access.

The default DNS suffix for stationary computers used to be configured ei-
ther manually or by DHCP. Mobile computers may have two possible suffixes:
a primary suffix from their home domain and a connection-specific suffix ob-
tained from DHCP at the access network. We are concerned about the primary
suffix because it reveals the mobile host’s affiliation. When the computer tries
to resolve any DNS name, such as google.com, it will start by querying for
google.com.sales.contoso.com. This means that any DNS query will leak the mo-
bile’s default domain suffix to the access link and to the local DNS server.

4.2 Other Name Resolution Protocols

NetBIOS over TCP (NBT) provides another name service, which is mainly used
in closed Windows domains (or workgroups) at workplaces and homes. Comput-
ers broadcast name queries to the local network and answer them directly or via
WINS proxy.

NetBIOS lookup
Similar to DNS, NetBIOS name lookups reveal to the access network the names
of the services to which the user or computer is connecting. The names are
broadcast to the local link and, thus, can be heard by any computer on the same
access link, even on a switched wire network. Unlike the hierarchical DNS names,
NetBIOS names are not globally unique. For this reason, the protocol is rarely
needed when roaming outside the user’s workplace or home, yet it is typically
enabled everywhere.

WINS registration
When a computer connects to a network, it may also try to register its NetBIOS
name and group in the WINS server. Since it does not know whether a server
exists in this network, the registration is attempted regardless of the location.
The registration attempt reveals the computer name (e.g., hobbit), which is
typically the same as the first part of the FQDN, and the computer’s Windows
domain or workgroup (e.g., sales or contoso). Again, this information is broadcast
to the access link.
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LLMNR
The link-local multicast name resolution (LLMNR) protocol is also intended for
the local link. Unlike NetBIOS, it also works over IPv6. The queries are sent as
link-scope multicast. Although we have not observed this protocol in actual use,
Windows Vista laptops sometimes send spontaneous LLMNR requests for their
own name in order to detect possible name conflicts.

4.3 DHCP

The dynamic host configuration protocol (DHCP) is used to configure a host with
network-specific parameters such as an IP address and the local DNS suffix. It
is often the first protocol executed when a computer attaches to a network. A
typical execution consists of two request-response pairs: the client broadcasts a
DISCOVER message and receives one or more OFFERs from servers. It then
sends a REQUEST for one of the offers and the chosen server responds with an
ACK. The main purpose of the protocol is to transfer configuration information
from the server to the client, i.e., to the mobile host. Thus, the client does not
necessarily need to reveal anything about itself. In practice, however, clients do
tell quite a lot.

Host identification
The DHCP protocol allows the client to identify itself by sending its hostname
in the DISCOVER message. This enables the network to select host-specific pa-
rameters such as a permanently assigned IP address. Hostnames are unique only
to a specific domain and, thus, have little significance to a DHCP server at a
foreign network. In principle, the identifier could be simply left out while roam-
ing. Unfortunately, when the client sends the DISCOVER message, it may not
yet know whether it is connected to the domain network or roaming elsewhere.

DNS registration
The DHCP client may want to register its new address in the DNS. The client
itself can connect to the a dynamic DNS server at its home organization to up-
date the forward record, i.e., the mapping from name to IP address. The DHCP
server, on the other hand, is responsible for updating the backward record from
the newly allocated IP address to the DNS name. Within a Windows domain, the
DHCP server may also update the forward record on the client’s behalf. Either
way, the DHCP server needs to know the client DNS name. For this reason, a
Windows client sends its FQDN to the DHCP server in the REQUEST message.
It does this regardless of the network location and, thus, reveals the host name
and domain suffix to the access network.

4.4 Domain Controller

The domain controller (DC) is the authentication and directory server for a
particular Windows domain. It implements a version of the LDAP directory-
access protocol. When a client is configured to be a member of a domain, it always
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tries to find the domain controller of the network. It performs a DNS query for a
service resource to find the domain controller, e.g., LDAP. TCP.dc. msdcs.sales.
contoso.com. If the DC is found, the client knows it is on the intranet and starts
sending LDAP queries to the controller. On the other hand, if the DC is not
found, the client (Netlogon service) may try to use a cached IP address to send
the queries. For stationary computers and ones that move in the intranet, this
improves reliability in case of DNS failures. For roaming computers, however,
the attempts to connect to the DC will fail anyway.

Both the domain name and the cached IP address will reveal the mobile’s af-
filiation. The IP address will be cached only for 15 minutes. We found, however,
that if the computer was put into a sleep-saving mode at the intranet and re-
sumed later in a foreign network, the cached addresses were still used for several
minutes.

4.5 File Shares and Printers

Operating systems such as Windows try to improve the user’s roaming expe-
rience by discovering previously used network services and setting them up for
quick access. This can, however, result in unnecessary network chatter and failed
connection attempts.

Mounted network drives
The user in Windows can assign a drive letter to a network share so that it
appears as a local disk (e.g., map \\contoso-srv-2\alice\ as the Z: drive). These
shares are automatically mounted when the user logs in or connects to a network.
In order to find out whether the share is available, the client needs to probe the
server. The attempt to resolve the server’s DNS or NetBIOS name can be seen
by anyone observing network traffic at the access link. Although we tested only
Windows shares, automounted NFS volumes would presumably cause similar
privacy issues.

Shortcuts to network shares
Shortcuts to network file shares on other machines may cause similar attempts
at name resolution. These are usually accessed only after a user action but it
is not always obvious to the user which actions trigger the network access. For
example, right-clicking a shortcut may cause an attempt to connect to the server.

Printers
Windows saves information on all printers that have ever been configured for
use, unless they are explicitly deleted. A roaming user may sometimes use a
local network printer at the access network. These printers accumulate into the
printer list on the client computer, which many users never clean. When the
user views the list of printers, the computer automatically tries to connect to
the printers and shows which ones are online. These connection attempts may
reveal not only the user’s organization but where the user has been roaming.
For example, one of our test laptops readily revealed to the network that it had
been printing in three cities on different continents.
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4.6 IKE and Kerberos

IKE with GSSAPI authentication
One of the most surprising sources of information leaks is the Internet key ex-
change (IKE) protocol. IKE is designed to protect the participants’ identities
against sniffing (in the main mode, which is implemented by Windows). This
protection is achieved by first performing an unauthenticated Diffie-Hellman
key exchange and by encrypting the following authentication with the session
key. The identity protection is considered one of the main security features of
IKE.

The standard IKE authentication methods are based on shared keys and
public-key certificates. Windows extends this with Kerberos authentication us-
ing the GSSAPI [PS01]. The client requests Kerberos authentication in the first
message it sends to the server. The client then obtains a Kerberos ticket from
the authentication center (AC) and uses this ticket for authentication in IKE.

The most obvious information leak happens because the GSSAPI authenti-
cation method sends the client computer name and domain to the server in the
first IKE message (in the SA payload). This may not appear to be a privacy issue
because Kerberos authentication is used only in the intranet and, thus, the data
should never be sent when the computer is roaming in a foreign access network.
In reality, the leak does sometimes occur when the client has just moved from
the intranet to a foreign access network (usually via sleep mode) and applica-
tions still attempt connections to intranet servers based on previously resolved
IP addresses.

Kerberos ticket request and ticket
Windows clients also sometimes attempt to connect the Kerberos server while
roaming. The ticket request contains the client computer name in plaintext.
Since this is a rare occurrence, we were not able to establish the exact cause of
the request. Since the Kerberos server is usually not reachable from outside the
intranet, the client will not receive a ticket. If it did, the ticket would further
reveal the name of the server for which the ticket is intended.

4.7 TLS/SSL

Plaintext certificates
The TLS handshake protocol sends the certificates unencrypted over the net-
work. Usually, only the server is authenticated and only the server certificate is
sent. This means that if the client connects to a secure web server of its own
organization, the name of the organization will appear on the wire. Sometimes,
TLS is used also for client authentication. This may happen, for example, when
the client application is not a web browser but a web-service client, an email
client or a TLS-VPN client. In that case, the plaintext client certificate and
name are seen on the network, which allows easy and reliable identification of
the client.
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EAP-TLS
Secure 802.11 wireless LANs do not leak much information to those who are not
authorized to join the network. However, wireless networks in managed domains
may use certificates and the EAP-TLS protocol for client authentication. The TLS
handshake inEAP-TLS reveals the client identity to anyone listening, even to those
who themselves are not authorized to access the network. This problem has been
addressed by a recent privacy enhancement to the EAP-TLS protocol [SAH08].

4.8 Application Metadata

It is clear that plaintext access to email, web pages, search engines and other
online services leaks confidential data. For example, we found unencrypted in-
stant messaging (IM) clients sending not only the messages themselves but also
the username, real name, gender, birth date, post code, buddy list and block list
over the network. Unencrypted SIP signaling for IM or VoIP also reveals the user
name and possibly who his contacts are. All this information could, however, be
protected from sniffing by encrypting the messages between the client and the
server.

A particularly interesting case is the iTunes music-player software, which dis-
covers other iTunes users nearby. It does this by broadcasting advertisements to
the local link, which contain the username and computer name. (The protocol
is Apple Bonjour, which is based a proposal for multicast DNS [CK06]). This
allows the users to listen and purchase the same music. There is no obvious way
to encrypt this communication as the aim is to communicate with new people
without configuring a security association.

5 Discussion of the Leaks

In the information leaks discovered above, essentially the same data is revealed
again and again:

– user identifiers (username, GUID, email address, real name),
– computer name, and
– user affiliation (DNS suffix, domain or workgroup, servers accessed).

One way to understand the consequences of such data leaks is to compare carry-
ing a mobile computer to wearing a name badge or an RFID tag that broadcasts
the name and affiliation of the person carrying it. Although the user’s real name
is not sent to the network as frequently as other identifiers, an email address or
username and domain are usually sufficient to discover the user’s personal web
page or other information about the user. Although being identified is not very
dangerous in itself, it may expose the user to unwanted attention from other
people, and it may put the computer to a higher risk of attacks by hackers on
the same access link.

Broadcast links, such as wireless access points, are the most opportune places
for the casual observer. Most public-access wireless links are unencrypted or



Chattering Laptops 181

use the same shared key between all stations. On a switched wire Ethernet, a
casual observer can only see broadcast packets. These comprise mainly DHCP
DISCOVER and REQUEST messages and NetBIOS name lookups and regis-
trations. Together, these packets may reveal the computer name and the user’s
organization but usually not the username. A typical situation where one can
see many such broadcast packets is a wire network at a hotel or airport lounge.

Few public wireless access points currently use link-layer encryption. Those
that do will block out unauthorized users but only for the purpose of charging.
They will still let in mutually distrusting users who have paid paid for the access.
Most access points now support per-client encryption keys between the AP and
the client. The resulting level of privacy is similar to switched wire Ethernet.

It may seem that preventing a computer from sending a name or an identifier
to the network is a simple task. If it were a question of one identifier sent by
one piece of software, this would indeed be the case. What makes the problem
difficult is that there so many protocols, at all layers of the network stack, and
so many applications are sending so many different identifiers at different times.
Naturally, all these protocols serve some purpose and cannot be simply disabled
without causing inconvenience to the user.

The current practice in software engineering is to build the protocols, appli-
cations and services to be independent of each other and let each one perform
its own discovery procedure. As a result, there is no single product or manufac-
turer in control of all the data that is sent to the network by a mobile computer.
In this sense, Internet-enabled appliances are in a more reasonable position to
protect the user privacy while it is almost impossible to know or control what
data is sent to the network from a fully-fledged computer.

Most of the information leaks occur because of failed service discovery at-
tempts. That is, the roaming computer is trying to find and access network
services that are not accessible on the foreign network or it is trying to execute
protocols that are only used between computers that belong to the same domain.
The computer does this because it doesn’t know which network it is on or which
services are available there. In most cases, the client receives a “non-existent
domain” response to the DNS requests, no response to the NetBIOS lookups,
or finds that the server IP address is unreachable. These failed queries and con-
nection attempts constitute unnecessary network chatter. If the client had some
way of knowing whether the service can be accessed from the current location,
it would not need to send out any of those packets. That is the reasoning behind
the solution we introduce in Section 6.

Some of the identifier leaks are caused by public Internet services such as
instant messaging, VoIP and various toolbars. The obvious solution is to encrypt
the data between the client and server in a way that protects the client identity;
for example, authenticate the client inside an TLS/SSL tunnel or deploy IPsec
in identity-protecting mode. The technology exists and its deployment is simply
a business issue.

A slightly more subtle problem is created by services that are operated by the
mobile computer’s home organization and are accessible from the Internet. These



182 T. Aura et al.

include email servers, web-mail interfaces, and VPN gateways. Encryption hides
the identity of the user and computer but cannot mask their affiliation with the
server. The identity of the organization could be obscured a little by hard-wiring
the server IP addresses to the client or by using nondescript DNS names. A more
robust solution is an anonymous routing mechanism such as Tor (see Section 2)
at the cost of relatively poor real-time performance.

6 Preventing Unnecessary Chatter

In this section, we describe a strategy for preventing the unnecessary network
chatter. The basic idea is to identify the access networks and to attempt con-
nection to a service only on the networks where the service exists.

Some laptops (e.g., those with Mac OS X) have for some time allowed the
user to configure network profiles and select them manually. Windows Vista
implements a network-location-awareness (NLA) service that identifies the access
network automatically, without user interaction. Since this mechanism is not yet
widely known, we explain it in some detail. NLA creates a fingerprint of the
access network, which is a set of parameters associated with the network. NLA
then computes a network identifier as a cryptographic hash of the fingerprint.
Applications and operating-system components can query NLA for the network
identifier and use it as a database key to store and retrieve any information
related to networks. On the first visit to the network, the network identifier is
just a random-looking number. On the following visits, it can be used to recognize
the network. Windows Vista currently uses NLA to remember the choice of a
firewall profile for each access network, so that the user is asked only once at
each network (and not asked at all for the intranet).

The choice of parameters in the NLA fingerprint varies by network type;
for the purposes of this paper, it suffices to think of the security profile for
authenticated networks and the gateway MAC address for others. Although the
gateway MAC address can be spoofed, the casual attackers considered in this
paper would not know the address value. For this purpose, we have proposed an
enhancement to the NLA mechanism would authenticate the DHCP server on the
network and use the server public key as the network fingerprint [ARM07]. This
kind of authentication would enable us to authenticate any previously visited
network without a PKI, which is exactly what is needed for the chatter-limiting
mechanisms explained below.

Given the NLA mechanism, the next step is to disable and enable service
discovery protocols depending on the network location. For this purpose, we
propose the following policy: When client software stores information about an
online service for the purpose of connecting to it later, it must also store the NLA
network identifiers of the access links where the service is known to be accessible.
Automatic connection attempts to the service are only allowed on those networks.

In a sense, when the user or administrator decides to access a service on
a network, he is making a policy decision to enable the same service always on
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the same network. The rule applies both to applications and operating-system
components that act as service clients. Some default policies should also apply:

– The active directory and Kerberos server should only be accessed on the
intranet.

– NetBIOS should disabled by default and enabled separately for each network
if needed.

– The default DNS suffix should be disabled outside the domain network.
– Network file shares may be accessed automatically and printers probed for

availability only in the network where they were originally configured, or if
the user explicitly request connection on another network.

– IKE with GSSAPI authentication should only take place in the intranet.

As a result, there should be no failed attempts at name resolution or failed
connections to servers when the computer is on the wrong access network. While
we believe this is the right approach in the long term, it requires changes to all
the different service clients and applications that send data to the network. It
can be argued that this requires a culture change to the way network client
software is designed, which we see as necessary.

Another way to control network chatter is to filter outbound traffic from
the computer at a host firewall. This would enable us to implement immediately
some of the policies mentioned above, such as disabling specific DNS or NetBIOS
queries. Packet filtering is a temporary emergency measure, however, because
it is typically done at very coarse granularity, such as disabling access to all
files shares instead of access to specific ones. The practicality of deep packet
inspection for this purpose remains to be tested as there are potential issues with
the firewall performance. Another problem with using firewalls is that dropping
packets may cause unpredictable failure of applications.

Finally, some of the information leaks described in section 4 are transitory in
the sense that they occur only when the mobile computer has just moved from
the intranet or home to a public access point. This happens because software
caches state data, such as IP addresses, and uses them even after moving to
a new network. These problems can be solved by detecting when the mobile
computer has disconnected from a network and by discarding any state data
that may be stale after the event. The same should be done after the computer
has been in a sleep mode and possibly moved to a new location.

7 Conclusion

In this paper, we analyzed identifier leaks from mobile computers to the access
link. We discovered that the username, computer name and organizational iden-
tifiers such as the domain suffix are sent unencrypted to the network by a large
number of different protocols and applications. This is a breach of privacy and
may expose users and their computers to unnecessary risks or embarrassment.
The privacy concerns could discourage people from using new communications
technology to its full potential. We suggest a solution based on network location
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awareness (NLA). Client software should remember the networks on which it
has been configured to access each service. It should not try to automatically
discover the service at other locations. This solution requires changes both to
application clients and to many parts of the network stack; in effect, we are
proposing a change of culture in the way service discovery in network network-
enabled software is implemented.

References

[ACL+07] Akritidis, P., Chin, W.Y., Lam, V.T., Sidiroglou, S., Anagnostakis, K.G.:
Proximity breeds danger: Emerging threats in metro-area wireless net-
works. In: Proceedings of 16th USENIX Security Symposium, Boston,
MA, USA, August 2007. USENIX Association (2007)

[Aho75] Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM 18(6), 333–340 (1975)

[AHK03] Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise
privacy authorization language (EPAL 1.2). Research Report RZ 3485,
IBM (March 2003)

[AKR06] Aura, T., Kuhn, T.A., Roe, M.: Scanning electronic documents for per-
sonally identifiable information. In: Proceedings of 5th ACM Workshop
on Privacy in the Electronic Society (WPES 2006), Alexandria, VA, USA,
October 2006. ACM Press, New York (2006)

[ARM07] Aura, T., Roe, M., Murdoch, S.J.: Securing network location awareness
with authenticated DHCP. In: Proceedings of 3rd International Confer-
ence on Security and Privacy in Communication Networks (SecureComm
2007), Nice, France, September 2007. IEEE Press, Los Alamitos (2007)

[BS03] Beresford, A.R., Stajano, F.: Location privacy in pervasive computing.
IEEE Pervasive Computing 2(1), 46–55 (2003)

[BSF06] Broido, A., Shang, H., Fomenkov, M., Hyun, Y., Claffy, K.: The Win-
dows of private DNS updates. Computer Communication Review (ACM
SIGCOMM) 36(3), 93–98 (2006)

[Cha81] Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), 84–88 (1981)

[CK06] Cheshire, S., Krochmal, M.: Multicast DNS. Internet-Draft draft-
cheshire-dnsext-multicastdns-06, IETF, Expired (August 2006)

[CPG04] Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Un-
derstanding data lifetime via whole system simulation. In: Proceedings
of 13th Usenix Security Symposium, San Diego, CA, USA, August 2004,
pp. 321–336. USENIX (2004)

[CSWH00] Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed
anonymous information storage and retrieval system. In: Federrath, H.
(ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp.
46–66. Springer, Heidelberg (2001)

[Cra02] Cranor, L.F.: Web Privacy with P3P. O’Reilly, Sebastopol (2002)
[CJBMM04] Cuellar, J.R., Morris Jr., J.B., Mulligan, D.K., Peterson, J., Polk, J.M.:

Geopriv requirements. RFC 3693, IETF (February 2004)
[DSCP02] Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring

anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS,
vol. 2482. Springer, Heidelberg (2003)



Chattering Laptops 185

[DMS04] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation
onion router. In: Proceedings of the 13th USENIX Security Symposium,
San Diego, CA, USA. USENIX Association ( August 2004)

[FMT06] Franklin, J., McCoy, D., Tabriz, P., Neagoe, V., Randwyk, J.V., Sicker,
D.: Passive data link layer 802.11 wireless device driver fingerprinting. In:
Vancouver, B.C. (ed.) 15th Proceedings of USENIX Security Symposium,
Canada, July 2006, pp. 167–178. USENIX Association (2006)

[GDMR06] Gerdes, R., Daniels, T., Mina, M., Russell, S.: Device identification via
analog signal fingerprinting: A matched filter approach. In: Proceedings of
13th AnnualNetwork and Distributed System Security Symposium (NDSS
2006), San Diego, CA, USA, February 2006. Internet Society (2006)

[GM82] Goguen, J.A., Meseguer, J.: Security policies and security models. In:
Proceedings of IEEE Symposium on Research in Security and Privacy,
Los Alamitos, CA, USA, April 1982, pp. 11–20. IEEE Computer Society
Press, Los Alamitos (1982)

[GG03a] Gruteser, M., Grunwald, D.: Anonymous usage of location-based services
through spatial and temporal cloaking. In: Proceedings of MobiSys 2003:
The First International Conference on Mobile Systems, Applications, and
Services, San Francisco, CA, USA, May 2003, pp. 31–42. USENIX Asso-
ciation (2003)

[GG03b] Gruteser, M., Grunwald, D.: Enhancing location privacy in wireless LAN
through disposable interface identifiers: a quantitative analysis. In: Pro-
ceedings of 1st ACM International Workshop on Wireless Mobile Appli-
cations and Services on WLAN Hotspots (WMASH), pp. 46–55 (2003)

[GF07] Guha, S., Francis, P.: Identity trail: Covert surveillance using DNS. In:
Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776. Springer, Hei-
delberg (2007)

[GGP+07] Greenstein, B., Gummadi, R., Pang, J., Chen, M.Y., Kohno, T., Seshan,
S., Wetherall, D.: Can Ferris Bueller still have his day off? Protecting
privacy in the wireless era. In: Proceedings of 11th Workshop on Hot
Topics in Operating Systems (HotOS XI), San Diego, CA, USA, May
2007. USENIX Association (2007)

[JWH07] Jiang, T., Wang, H.J., Hu, Y.-C.: Preserving location privacy in wire-
less LANs. In: Proceedings of 5th International Conference on Mobile
Systems, Applications, and Services (MobiSys 2007), San Juan, Puerto
Rico, USA, June 2007, pp. 246–257. ACM Press, New York (2007)

[JP02] Johnson, D.B., Perkins, C.: Mobility support in IPv6. RFC 3775, IETF
(June 2004)

[KBC05] Kohno, T., Broido, A., Claffy, K.: Remote physical device fingerprinting.
In: Proceedings of IEEE Symposium on Security and Privacy, Oakland,
CA, USA, May 2005. IEEE Computer Society Press, Los Alamitos (2005)

[KC05] Kowitz, B., Cranor, L.: Peripheral privacy notifications for wireless net-
works. In: Proceedings of Workshop on Privacy in Electronic Society
(WPES 2005), Alexandria, VA, USA, November 2005, pp. 90–96. ACM
Press, New York (2005)

[Law03] Lawton, G.: Instant messaging puts on a business suit. Computer 36(3),
14–16 (2003)

[LT06] Lindqvist, J., Takkinen, L.: Privacy management for secure mobility. In:
Proceedings of Workshop on Privacy in Electronic Society (WPES 2006),
Alexandria, VA, USA, October 2006, pp. 63–66. ACM Press, New York
(2006)



186 T. Aura et al.
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Abstract. In recent years, there have been several proposals for anony-
mous communication systems that provide intentional weaknesses to al-
low anonymity to be circumvented in special cases. These anonymity
revocation schemes attempt to retain the properties of strong anonymity
systems while granting a special class of people the ability to selectively
break through their protections. We evaluate the two dominant classes
of anonymity revocation systems, and identify fundamental flaws in their
architecture, leading to a failure to ensure proper anonymity revocation,
as well as introducing additional weaknesses for users not targeted for
anonymity revocation.

1 Introduction

Anonymous communication systems have been studied extensively since David
Chaum introduced the mix in 1981 [5]. Their principal aim is to hide the fact that
Alice is communicating with Bob from network adversaries or corrupt nodes in
the anonymity-providing system. Practical anonymous communication systems
have been proposed and fielded for email [13,25] and web-browsing [2,32]. They
are based on intermediate nodes relaying the communication and hiding the
correspondences between their inputs and outputs to obscure who is talking
with whom. An extensive survey of anonymous communication channels and
their properties is provided in [12].

Many approaches have also been proposed to mitigate the potential for abuse
of anonymous communications. These approaches fall into two main classes. The
first one, based on blacklisting [21], is respectful of users’ anonymity and empow-
ers service providers to block abusive users without ever finding their true iden-
tity. This approach is similar to the blacklisting of anonymous credentials [33,4].
Another form of blacklisting is used by Mixmaster; as senders of abusive content
cannot be identified, recipients of abusive content who do not wish to receive
mail from the anonymous remailer network can submit their email addresses to
be blocked, so that they will not receive unwanted communication in the future.
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This technique has been implemented in Mixmaster on a per-remailer basis with
support for the network-wide “Remailer Abuse Blacklist” (RAB), which ensures
the silencing of abusive messages regardless of the remailer used (as long as it is
a participant in the RAB.)

The second approach is based on anonymity revocation or anonymity escrow,
and allows a collection of authorities to revoke the anonymity of a user associated
with a particular communication. Revocation has fundamentally different aims
from blacklisting, and can be applied to tracing arbitrary messages between
(even consenting) users to prevent covert communication.

Two lines of research have been developing in engineering revocation mech-
anisms into anonymity systems. The first family of systems is by Dı́az and
Preneel [16, 8, 9] (DP), and the second and latest by Köpsell, Wendolsky and
Federrath [23] (KWF). Given the similarity in their approach, we will examine
in detail the latest KWF system [23], and show in the discussion how our results
are applicable to the first set of systems.

The key feature of the DP and KWF anonymity revocation mechanisms is
that they “wrap-around” any anonymity system without modifying its internal
functioning. Decoupling revocation from the anonymity channel is a wise design
choice. It recognizes that building anonymous communication systems requires a
careful balance between engineering and security, and adding more requirements
into the core of the designs may lead to unsafe systems. This approach also adds
generality, since, in theory at least, it would allow any secure anonymity system
to be easily modified to include a revocation mechanism. A secondary design
aim of the revocation mechanisms is to retain the same set of trust assumptions
and security properties as the underlying anonymity systems.

In this work, we demonstrate that both revocation mechanisms are not as ef-
fective as believed, and some forms of anonymous communication are always pos-
sible despite them. The scheme’s independence from any particular anonymous
channel turns into a weakness: as we show, there exists no concrete practical
channel to instantiate it securely. Even a single party within the anonymization
infrastructure, adverse to the revocation protocol, is sufficient to help senders
bypass it to achieve anonymity without revocation, and without a significant
reduction in the quality of anonymity.

Furthermore, for onion-routing systems, the proposed architectures could lead
to a reduction in security even when the revocation mechanism is not exercised.
In most cases, the grafting of the revocation mechanism opens systems to Denial
of Service attacks and heightens the risk of censorship.

This paper is organized as follows: the basic architecture of the KWF system
is outlined in Section 2, and the key techniques necessary to bypass it in Section
3. Section 4 enumerates specific instances of KWF with concrete anonymous
channels and describes how to bypass revocation in each case. Concerns about
weakening the security of the anonymous channels by adding KWF to them
are presented in Section 5, and questions about the desirability of revocation
systems are discussed in Section 6. KWF and DP are contrasted in Section 7,
and conclusions on our work are offered in Section 8.
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2 The Internals of the KWF Scheme

The KWF [23] mechanism is a generic construction adding revocation capabili-
ties to any anonymous communication channel. The aim of the KWF scheme is
to not interfere with any of the security properties provided by the anonymous
channel unless the anonymity of the communication is to be revoked. In such
cases, the revocation authorities should reliably learn the identity of the sender
or initiator of the revoked anonymous communication. This property should
hold under the same security assumptions guaranteeing anonymity made by the
underlying channel.

The KWF scheme implements mechanisms for revocation by requiring users
to perform special steps before sending an anonymous message, as well as exam-
ining all messages output from the anonymous channel to the world. It relies on
threshold group signatures for its security; using those, a member of a group can
sign a message identifying himself as a member of the group without leaking any
additional information about his identity. However, a quorum of group managers
can invoke a revocation procedure to uncover a user’s identity if some abuse is
detected.

The KWF scheme also includes special features that allow operators not to
learn any information about the identity of the traced user. These are, to a large
extent, irrelevant to our attacks. Therefore, we shall not examine them in detail.
We refer the reader to the full scheme [23] for further details.

Aside from the parties taking part in the anonymous communications, as well
as the parties facilitating anonymization, the KWF scheme relies on some addi-
tional entities. Since the scheme uses group signatures, an entity is designated
to be the group manager, that has the power to trace a group signature to a
specific pseudonym. A third party is trusted to check senders’ real identities and
correctly package cryptographic tokens based on them. A verifier is entrusted
with verifying signatures and censoring invalid messages. Finally, some abstract
authorities are authorized to learn the senders of revoked messages – these par-
ties possess by design (as opposed to being due to an accidental weakness in the
system) the ability to remove any user’s anonymity, as well as ensure that node
operators comply with the protocol.

The skeleton of the KWF protocol proceeds as follows:

1. Login. A user wishing to send an anonymous message first logs in to a third
party and acquires a signed ‘revocation token’. This token is a ciphertext of
his real identity (this may be a strong identity, derived from a public-key
certificate, or simply the IP address of the user) encrypted using a threshold
crypto-system. The user becomes a member of the group that is allowed to
send messages through the channel. The third party gives the user the secret
key to prove membership to the group, using a (revocable) group signature
scheme.

2. Sending. The user signs his message using his group signature key and pack-
ages it cryptographically, as appropriate for the specific anonymous channel.
He then sends the message, or performs whatever action is necessary to
execute the anonymous communication channel protocol.
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3. Checking. Once the message is output from the anonymous channel, it is
given to a verifier. The verifier checks the group signature on the message; if
it is not valid, the message is discarded. If the signature is valid, the message
is forwarded to the intended recipient of the message.

4. Revocation. In case the message offends some policy, the revocation proce-
dure is set in motion. The group signature associated with the message is
provided to the group manager that traces it to a particular pseudonym. The
pseudonym is used to retrieve the ‘revocation token’, and the real identity
of the sender is retrieved by threshold decryption, performed by some third
parties, and given to the authorities.

An important objective of the KWF scheme is to not modify the trust model
of the anonymous channel. For this reason, the third parties necessary to perform
the threshold decryption and provide the identity of the user to the authorities
are chosen to be the same third parties that facilitate the anonymization of
messages, i.e., the anonymization infrastructure itself. The stated aim is for the
revocation protocol to be secure under the same conditions as anonymity is
secured: when a threshold of honest servers exists in the network.

Our attacks against the KWF scheme, and the closely-related DP scheme,
show that the protocols do not meet this objective. It is possible to bypass the
revocation mechanisms and achieve strong anonymity if even a single participant
in the anonymity infrastructure is unwilling to follow the revocation protocol.
For some common choices of anonymous channels, it is even possible to bypass
the revocation mechanisms without the help of any insider.

3 Outline of the Bypass Attacks

The key assumption on which the KWF and DP schemes base their security is
that there can be no leakage of information from inside the channel to the world
unless it passes through the verification step. In the KWF design, the anonymous
channel is presented as a pipe with a clear entry and exit point, while in the DP
design, the mixes are assumed to be unable to misbehave.

In practice, anonymous channels are complex multi-party protocols involving
many often-untrusted participants who are in a position to learn a lot of infor-
mation about the messages in transit. Engineering anonymous channels devoid
of covert channels has never been a core objective of designers. The idea that
the verifier is able to ‘catch’ all message flows from the network to the outside
world is particularly hard to implement when the sender is intentionally trying
to leak information through an accomplice that is part of the infrastructure.

Our attack only modifies the Sending step of the KWF protocol. A user
correctly logs into the third party and acquires the appropriate credentials to
use the anonymity system. However, he does not sign the message that he wishes
to send. Instead, he packages it in such a way as to take advantage of a single
accomplice in the infrastructure that will leak the message to the world (or to
co-conspirators) without first presenting it to the verifier. We shall examine in
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detail, in the next section, how this can be done in the most common anonymizing
channels.

Why does the attack work in general? Anonymous channels have been de-
signed to be incentives compatible. They rely on the parties that will benefit
from the anonymity properties, the senders in our case, to package their mes-
sages in such a way as to leak no information about their content or destinations.
With the exception of anonymous channels designed for elections,1 there is no
mechanism preventing users from packaging their messages in a way that reveals
their contents to arbitrary third parties.

The KWF design provides incentives for users to bypass the verifier. It is
trivial in almost all anonymity designs to make use of a corrupt insider (and
often even an observer) to leak their messages out of the channel without being
subject to the verifier’s scrutiny.

It is important to understand the role of the insider that enables non-revocable
anonymous communications: the only service they provide is leaking the message
to the outside world without vetting it through the verifier. As such, insiders only
facilitate a covert channel, but are not required to provide any anonymity: the
use of the anonymous channel, and the otherwise honest participants, already
provides this. Therefore, the insiders do not need to act as anonymizing relays,
but merely as exits from the channel.

It is not necessary for the corrupt insider to have any details about the real
identity of the sending user, and it is impossible to obtain any additional infor-
mation by observing any of its internal state. Therefore, a compromise of the
insider nodes does not lead to a compromise of the senders’ identities.

4 Bypassing Specific KWF-* Mechanisms

To illustrate our attacks, we will show how a sender can use unintended covert
channels in most anonymity systems to leak messages to others without being
subject to the verifier’s censorship.

We will have to show in all cases that (1) the message benefits from the
anonymity properties of the channel (without the corrupt insiders contributing
to the anonymity); (2) that a single corrupt insider is sufficient to bypass the
system; (3) that the message can be leaked in a way that does not arouse suspi-
cion. We shall denote the instances of the KWF systems as KWF-*, where the
“*” denotes the specific anonymous channel used by the system.

KWF-cascades. The KWF is first presented in terms of mix cascades [2, 18],
so we should start by demonstrating that a single dishonest member of the
mix cascade can bypass the verifier.

Mix cascades anonymize messages by relaying them through a predeter-
mined and fixed set of intermediary nodes. The messages are encoded in

1 It is important that election systems provide a method for the voter to verify that
her vote is counted, but prevent the voter from proving how she voted to a third
party, to achieve coercion resistance.
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multiple layers of encryption, and each intermediary strips a layer before
passing the message along to the next mix. With n mixes in the cascade, the
message leaving the sender should be encrypted under the public keys of all
mixes and look like:

M′ = EK1EK2 . . . EKn(A, M) (1)

Where Ek(·) denotes encryption under the key k, A the final address of the
message and M the message itself. M ′ is sent to the first node N1, where it
is decrypted and forwarded to the next node.

Assume that the single node Nj and the sender are collaborating to
bypass the revocation mechanism. The sender simply packages the message
as:

M′ = EK1EK2 . . . EKj EKsecret(A, M) (2)

The key Ksecret can be a shared key between the sender and node Nj. The
message will be correctly relayed until node Nj . At this point, it will appear
in the clear to node Nj, which can leak it to any third party.2 The node
Nj should then forward the ciphertext EKsecret(A, M) along, to make its
observable operation indistinguishable from an honest node. The message
arriving at the final node will be indistinguishable from a random plaintext,
and will be discarded by the verifier as not having a valid signature.

The double encryption of the message received by Nj provides compulsion
resistance. The mix is able to follow the protocol unaltered and decrypt the
message first with its public key Kj . Then it can covertly check whether
the message is to be leaked, by checking on whether it decrypts correctly
with the key Ksecret. Yet if an adversary captures the node, and compels it
to reveal its secrets, there is no way to prove that any key exists beyond
the first one. To achieve this, messages encrypted under Ksecret should be
indistinguishable from those destined to the next stage of mixing – a property
that is simple to implement.

Compulsion resistance protects the collaborating mix from reprisal, but is
not necessary to maintain anonymity. In case both keys Nj and Ksecret are
leaked, the message still benefits from the anonymity provided by the mixes
N1, . . . , Nj−1.

Since the message contains no signature to revoke, it is not possible to
trace it back when the verifier receives it. Furthermore, if the message has
gone through at least a single honest node before reaching the node Nj, it
has benefited from the anonymity of the channel without being traceable. It
is also clear that a single Nj is sufficient to leak the messages, and that that
sender has a high bandwidth channel to leak and anonymize messages. (The
bandwidth is at least as high as if it were using the legitimate system.)

We conclude that for the KWF-cascades system, the security goal that
the revocation mechanisms should work if there is a threshold of honest users
does not hold.

2 Of course, node Nj may very well be the intended recipient, with no further dissem-
ination of the message necessary.



How to Bypass Two Anonymity Revocation Schemes 193

KWF-mix. Mix systems [5] are sets of routers that decrypt and forward mes-
sages to a designated address. Multiple mixes are chained together to form
paths, over which messages are relayed. As with cascades, the cryptographic
format of messages upon injection into the mix network is:

M = EK1(N2, EK2(. . . (Nn, EKn(A, M)))) (3)

Messages are encrypted using multiple layers with the public keys of inter-
mediate mix nodes. Unlike the formatting of messages for mix cascades, the
address of the next node is included in the encrypted envelope to facilitate
routing.

Mix systems can trivially be used to implement the bypass attack by
including in the path a single corrupt mix that will leak a message to its
final destination. A message can be formatted as:

M = EK1(N2, EK2(. . . (Nj , EKj EKsecret (A, M)))) (4)

Node Nj is dishonest, decrypts the message and forwards it to its final
destination without checking its signature or mediating the communication
through the verifier. Indistinguishability from honest behaviour can still be
achieved. If node Nj comes under compulsion, it can reveal its private key,
but without revealing Ksecret, it is impossible to distinguish its operation
from the honest nodes. Messages can still contain valid routing information
for a subsequent path [11], making it impossible for an adversary to distin-
guish the node that leaks messages.

As with cascades, a single dishonest node is able to bypass the revoca-
tion mechanism and allow anonymous communication to take place. Even if
node Nj is under passive surveillance, the message has benefited from the
anonymity offered by nodes N1 . . .Nj−1. Therefore, for general mix systems,
the KWF revocation mechanism does not meet its security goals.

Other considerations. Other covert channels are available in some mix
systems, allowing for covert communication even without the need for a
corrupt party. Proposals to make mix networks robust assume that inputs
and outputs of relayed messages are published on a public bulletin board [20,
26]. In such designs, Alice and Bob can communicate covertly by sharing a
key and encoding the message so that it exits some mix “in the clear”.
Requiring mix systems not to publish any information would make universal
verifiability of delivery impossible to implement using efficient techniques,
and would make such networks insecure against denial-of-service attacks [3].

KFW-or/tor. Onion routing architectures [32, 17] employ layered encryption
and paths over networks of routers, and are architecturally very similar to
mix networks. As a result, the same techniques can be used to route the
stream through a dishonest node that leaks information to the outside world
without checking signatures or presenting them to the verifier.

While architecturally related to mixing, onion routing defends against a
very different threat model, and it is likely that the verifier will be able to
mount de-anonymization attacks if it relays and checks all streams of traffic.
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This is due to the onion routing being susceptible to passive attacks, while
mix networks should be secure against a global passive adversary. We discuss
this further in section 5.

KFW-buses. Buses [1] is a broadcast anonymization protocol. Nodes arrange
themselves in one or multiple paths, over which “buses” travel. Buses are bit-
strings containing multiple messages that are encrypted and re-encrypted as
the ‘bus’ is relayed by each node, making it impossible to tell at what node
they were introduced or removed. Messages are encrypted under the secret
key of the final recipient, which detects them by trial decryption.

The peer-to-peer nature of buses makes it difficult to implement the KWF
scheme, since only the final recipient gets to see and decrypt the message, not
any other intermediary. Therefore, the KWF architecture cannot be applied
to buses, since covert channels to the final recipients are intrinsic to the
security of the scheme.

The obvious modification to accommodate KWF would be to address all
messages to the verifier, who would then forward them to their respective
receivers. This architecture would be equivalent to using the verifier as a
single-hop proxy, since all the messages would simply be encrypted under its
public key. This falls short of the original security properties of buses, which
offer perfect receiver anonymity.

KWF-pir. Recently, proposals for the use of Information Theoretic Private
Information Retrieval [7] in anonymous communications have been made [30,
19]. In Information Theoretic PIR, a set of databases (all containing an
identical data set) are queried such that it is impossible for an adversary
to determine what information is being requested by the user making the
query unless some threshold of databases being queried are in collusion. In
the proposed anonymity systems built on this form of PIR, the PIR database
is used to store messages for pseudonyms.

Information-theoretic distributed-trust PIR systems derive, in part, their
security from the fact that a user sends a set of queries to � databases
which he chooses from all of the databases in the system. Each query in the
set is constructed such that the union of some number of elements of the
query set reveals the location in the database of the message which the user
wishes to retrieve; if another entity can observe the entire query set, it can
determine which message the user is retrieving. Routing all requests through
the verifier, as the KWF scheme requires, would thus expose the full query
set to the verifier, thereby automatically linking each user to the messages
he retrieves and compromising receiver anonymity by default.

Furthermore, anonymous covert channels exist in systems where large
amounts of random data are passed between different entities [28], and an
identity-revocation solution would not be likely to prevent anonymous com-
munications if a communicating party operated part of the infrastructure.

There are two protocols in the literature, Crowds [29] and Dining Cryptogra-
phers’ networks (DC-nets) [6], for which the KWF scheme would be applicable.

DC-nets are information-theoretically secure and devoid of covert channels.
It is therefore possible to imagine all users contributing their inputs to the
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centralized verifier server that combines, shares, and outputs the final message
only if it is valid. This centralized architecture would be secure, but would scale
poorly. Scaling problems, as well as sensitivity to denial of service, are so preva-
lent in DC-nets that they are not used in practice.

Crowds [29] is a simple pass-the-parcel mechanism, in which nodes probabilis-
tically relay messages in the clear before forwarding them to their final destina-
tion. A naive implementation of the KWF mechanism could be bypassed: the
sender simply does not include a ring signature into the sent messages. Given
the limited control the sender has over the routing of messages, delivery is only
possible if the message reaches a collaborating node. Therefore, the attack has to
rely on a large fraction of collaborating nodes being part of the Crowds network
— a much stronger assumption than those made so far.

The KWF mechanism could also be easily modified to be robust even against
those attacks. The KWF protocol would have to be augmented to ensure that
all honest Crowds nodes check the validity of the signature of all messages they
relay and report those nodes that forward messages without valid signatures.
This is possible in Crowds since relayed messages are visible to nodes in clear.
In practice, Crowds is not in use because of the weak anonymity properties it
provides, which also enable checking the KWF signatures at each step.

5 Unintentionally Introduced Weaknesses in the KWF
Scheme

The KWF scheme aims to “allow for deanonymisation without weakening the
general trust model of an anonymity service.” Yet through the introduction of a
new infrastructure component, “the verifier”, users of the system become more
susceptible to attacks by an adversary not in collusion with the operators of the
revocation system.

End-to-end traffic analysis. The verifier greatly reduces the difficulty of per-
forming end-to-end traffic analysis attacks, by serving as a convenient single
end-point in a fixed location. The fact that all traffic leaving the anonymity
system can be observed, and timed, at the verifier facilitates multiple attacks
described in the literature.

Many of the statistical disclosure attacks are made easier in this ar-
chitecture [14, 24], since the message recipients are readily available to the
verifier. Onion-routing security is greatly affected, since the verifier can col-
laborate with any entry node to correlate the low-latency streams of traffic
to trace them [34, 10]. In general, the KWF architecture interacts poorly
with anonymity systems providing security against a partial adversary only,
since it requires the verifier to act as a centralized global observer. Classic
active attacks such as the (n − 1) attack [31], in which an adversary injects
a single message in a mix along with many of their own messages, are much
easier to perform against the whole network by the verifier.

Furthermore, the effectiveness of dummy traffic is greatly reduced.
Network-generated cover traffic cannot contain valid ring signatures to get
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past the verifier and reach the final recipients. Therefore such dummy mes-
sages, injected by mixes to thwart traffic analysis, are easily distinguishable
from user-generated messages exiting the network, rendering them useless.

Denial of service. The verifier acts as a computational and communication
bottleneck, since it has to inspect every message. That further exposes the
system to denial-of-service attacks. Even a single rogue node, or client,
can create a near-limitless number of messages with syntactically-correct,
semantically-invalid signatures, to force the verifier to perform a verification
of the signature – an expensive public-key operation. The anonymity of this
node would be protected by the operation of the network, and it would be
difficult to uncover and stop it.

Censorship. The verifier can easily be turned into a censor. Instead of attempt-
ing to trace messages violating an arbitrary policy, it can simply silently drop
them. This feature of the revocation protocol goes against the latest attempts
to make anonymous communications more robust against censorship [22].
The login servers could also act as censors by not providing signature keys
to selected individuals.

This form of denial-of-service in anonymity systems does not simply
impact availability, but can also be used as a tool to decrease anonymity.
Therefore, the ability of the verifier to drop messages allows an adversary to
increase its chance of tracing a message [3].

Anonymity-set reduction. Multiple anonymity revocation orders may be is-
sued against the same anonymity set, thus weakening the anonymity pro-
vided to “legitimate” users. This is a concern that any user of such a system
could justifiably hold, for they have no control over the identity or actions
of the other members of their anonymity set (which in most systems is a
random set of users highly correlated to the time in which the system is
used.) If a significant portion of the traffic is deanonymized by the revoca-
tion mechanisms, the legitimate users will be put at risk of identification as
well.

6 Additional Concerns

The KWF scheme takes great pains to ensure that multiple parties (the
anonymization node operators) are involved in revoking anonymity. The intent is
to demonstrate that the individual node operators all cooperate in providing the
revocation of the anonymity their services provide; however, since participation
in such a system is presumed to be compulsory, the nodes participating in such
a system must be considered “in collusion”, or at best “under compulsion”, from
the standpoint of the existing anonymity threat models. This is especially true
in the KWF system, where a mechanism is employed to hide the identity of the
traced user from the operators, making it impossible to judge the legitimacy of
any revocation order before complying.
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The discussion of jurisdiction issues with regard to the system presented in
the KWF and DP papers is also missing. Backdoored anonymity systems are
unlikely to be preferred in jurisdictions where they are not mandatory, thus
resulting in separate networks for different jurisdictions, eliminating many of
the benefits of jurisdictional arbitrage. This leaves many unanswered questions
regarding which law enforcement agencies and judges are empowered to order
the revocation of a user’s anonymity, and presents difficult problems with regard
to maintaining a single cohesive anonymity-set.

A system which has a known weakness as part of its design is likely to reduce
the overall trust of the system—and for good reasons, as we have demonstrated.
From a deployment point of view, it is unclear why users would use a revocable
anonymity system instead of the easily accessible global anonymity solutions that
are free of backdoors. An attempt could be made to impose such restrictions on
the Internet as a whole, or put up country-level censorship systems (such as
those used in China and Iran [15]) to prevent the use of true anonymity systems,
but both of those approaches present their own problems beyond the scope of
this paper.

The designers of the KWF scheme indicate that the system is to be used
to revoke the identities of users sending to “suspicious addresses” or visiting
“suspicious websites.” Besides the obvious question of “what makes a recipient
suspicious?” there can be legitimate concerns that “suspicious” websites may be
created for the purpose of entrapment, to learn the identity of a user because of
legitimate past communications. An attack whereby a user is tricked into visit-
ing a given “suspicious website” could easily be implemented through the use of
hidden frames in an unrelated site. E.g., if an attacker knows that website A is
“suspicious”, the attacker could embed an element of website A in an innocu-
ous website B or in an HTML email, causing the user to unwittingly visit the
“suspicious” website. This could lead to the targeted deanonymization of honest
users for reasons other than those stated in an official warrant, and even allows
for corruption of this process by non-governmental agents.

7 Discussion of the DP Design

The DP class of revocable anonymity solutions has its origins in the APES Euro-
pean Union project. Part of the project is intended to further develop anonymous
communications, and also includes methods for the “control” of anonymous com-
munications [9].

We refer to the DP solutions as a “class” of revocation technologies, because
there are subtle differences between proposals. We focus on the most recent
proposal published by Dı́az and Preneel [16]. The DP scheme is harder to eval-
uate than the KWF scheme, because only a high-level design is proposed. Many
difficult questions of security emerge when the gaps in the design are filled in.

The DP scheme shares some elements in common with the KWF scheme:
a certification authority that holds users’ identities in escrow, judges who are
empowered to revoke the system, and a credential that is associated with any
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communication sent through the network. There are some basic problems with
the DP approach not found in the KWF-* system, following from the fact that
the identity credential is not cryptographically bound to the data being com-
municated. Hence, a mix can “frame” a user by associating the credential of a
“suspicious” user with a legitimate user’s traffic. This may be done specifically
to harm that user, or by a rogue mix wishing to associate a valid credential with
communication from a user other than the owner of that credential, to conceal
the identity of the non-credentialed user.

DP’s key difference from the KWF scheme is that the verifier is not central-
ized; instead, all exit nodes from the anonymity network are entrusted to check
signatures for validity before forwarding messages. The Bypass attack can suc-
cessfully be applied, and becomes trivial if even a single exit node is corrupt, as
for the KWF bypass attacks described in Section 3. Other security issues relating
to the centralization of the verifier in KWF, such as denial of service or traffic
analysis attacks, are not so severe due to this decentralized approach.

8 Conclusions

We find the two proposals for “conditional anonymity” to be a significant depar-
ture from the strength and protection assurances in traditional, non-backdoored
anonymity systems. The systems studied are ineffective at providing revocation
against users wishing to engage in covert communications, and additionally in-
troduce weaknesses that may compromise legitimate users.

From a technical point of view, no practical, deployed, anonymous communica-
tion channel fulfils the goals of the KWF or DP schemes, to provide mechanism-
independent anonymity revocation. Instead, they allow single insiders, or even
eavesdroppers, to leak anonymous messages out of the network, allowing unrevo-
cable communications to take place. Furthermore, the KWF-* mechanisms have
the potential to reduce anonymity through the introduction of a single verifier
entity that mediates all output messages or streams from the network. The ver-
ifier can mount traffic analysis attacks, be subject to denial of service, or censor
messages to impact availability or facilitate tracing.

From a deployment as well as a policy point of view, we believe revocation
mechanisms to be ill-conceived: it is unclear why any operator or user would
choose to use them when alternatives are available, and the proposed schemes
systematically fail to ensure any security against the abuse of the revocation
interfaces. Ironically, by introducing a strong framework for node collusion to
achieve revocation, the amount of trust a given user is likely to place in the
system as a whole is reduced. Yet, these issues go beyond the strictly technical
focus of this paper.
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Abstract. We present a reputation scheme for a pseudonymous peer-to-peer
(P2P) system in an anonymous network. Misbehavior is one of the biggest prob-
lems in pseudonymous P2P systems, where there is little incentive for proper
behavior. In our scheme, using ecash for reputation points, the reputation of each
user is closely related to his real identity rather than to his current pseudonym.
Thus, our scheme allows an honest user to switch to a new pseudonym keeping
his good reputation, while hindering a malicious user from erasing his trail of evil
deeds with a new pseudonym.

1 Introduction

Pseudonymous System. Anonymity is a desirable attribute to users (or peers) who par-
ticipate in peer-to-peer (P2P) system. A peer, representing himself via a pseudonym,
is free from the burden of revealing his real identity when carrying out transactions
with others. He can make his transactions unlinkable (i.e., hard to tell whether they
come from the same peer) by using a different pseudonym in each transaction. Com-
plete anonymity, however, is not desirable for the good of the whole community in the
system: an honest peer has no choice but to suffer from repeated misbehaviors (e.g.
sending an infected file to others) of a malicious peer, which lead to no consequences
in this perfectly pseudonymous world.

Reputation System. We present a reputation system as a reasonable solution to the above
problem. In our system, two peers, after carrying out a transaction, evaluate each other
by giving (or not) a reputation point. Reputation points assigned to each peer sum up
to create that peer’s reputation value. In addition, reputation values are public, which
helps peers to decide whether it is safe or not to interact with a particular peer (more
exactly a pseudonym).

Identity Bound Reputation System. We stress that, in our system, the reputation value is
bound to each peer. In existing reputation systems [16,18], the reputation value is bound
to each pseudonym. Consequently, a new pseudonym of a malicious peer will have a
neutral reputation, irrespective of his past evil deeds. Thus, honest peers may still suffer
from future misbehavior. On the other side, honest users won’t use a new pseudonym,
in order to keep the reputation they have accumulated. Thus, they cannot fully enjoy
anonymity and unlinkability. Motivated by this discussion, our goal in this paper is to
design an identity bound reputation system, combining the advantages of anonymity
and reputation.

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 202–218, 2008.
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Our Contribution. First, we formally define security for identity bound reputation sys-
tems (Section 3). As far as we are aware, this is the first such security definition. Our
definition captures the following informal requirements:

– Each peer has a reputation which he cannot lie about or shed. In particular, though
each peer generates as many one time pseudonyms as he needs for his transactions,
all of them must share the same reputation. Also, our system is robust against a
peer’s deliberate attempts to increase his own reputation.

– Reputation are updated and demonstrated in a way that does not compromise
anonymity. In particular, the system maintains unlinkability between the identity
of a peer and his pseudonyms and unlinkability among pseudonyms of the same
peer.

Our second contribution is the construction of a reputation scheme that satisfies the
security definition. It is a nontrivial task to realize a secure identity bound reputation
scheme, as the requirements of anonymity and reputation maintenance are (seemingly)
conflicting. Here, we only briefly give basic ideas for the construction (see Section 2
for high level description of our scheme and Section 5 for the detail). To satisfy the first
item, we need a central entity, Bank. Bank, aware of the identity of each peer, keeps
reputation accounts by the peer, and is considered trusted to perform its functional op-
erations — reputation updates etc. — correctly. Since we do not consider Bank trusted
in terms of the anonymity requirements, we need to utilize a two-stage reputation de-
posit procedure. For the second item, we use the concept of e-cash. E-cash is well-suited
to our system since it can be spent anonymously, even to Bank. We also use other prim-
itives, such as anonymous credential system and blind signatures.

Organization. In Section 2 we provide a high level description of our scheme. In Section
3 we present our model, including security requirements. The building blocks used
by our system are described in Section 4, followed by a detailed description of our
system in Section 5. Related work and future directions are discussed in Sections 6 and
7 respectively.

2 System Considerations and High Level Approach

In this section we discuss system considerations and present a high level description of
our scheme.

System Considerations and Assumptions. We assume that all communication takes
place over an anonymous communication network, e.g., a Mixnet [8] or an Onion
Router [24,11]. We further assume that this network is, in fact, secure. While we are
not minimizing the difficulty of achieving that — see, for example, [15] or [21] — we
regard that problem as out of scope for this paper.

We also assume certain out-of-band properties that are necessary for correspondence
to the real world. The most important such assumption is that there is some limit to
the number of reputation points any party can hand out per unit time. While we don’t
specify how this limit is set, we tentatively assume that it costs real money to obtain
such points to hand out. This might, for example, be the daily membership fee for
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participation in the P2P network. Note that the assumption corresponds quite well to the
best-known existing reputation system, Ebay. One can only dispense reputation points
there after making a purchase; that in turn requires payment of a fee to the auction site.
Bhattacharjee and Goel have derived a model for what this fee should be [4]; they call
the necessary property “inflation resistance”.

A last assumption is unbounded collusion. That is, any number of parties on this
network may collude to break anonymity of some other party. We specifically include
the bank in this assumption. We assume collusion because in most real environments,
it is possible for one party to open multiple accounts on the system. It may cost more
money, but it does achieve the goal. Since a bank employee can do the same, we assume
that the bank is colluding, too, albeit perhaps in response to a court order. Even if
we assume a foolproof system for restricting accounts to one per person, two or more
people could communicate via a private back channel, thus effectively creating multiple
accounts under control of a single entity.

On the other hand, the bank is trusted to behave honestly in its functional transac-
tions, which involve maintenance of reputation levels and repcoins for each peer (see
below). Thus, if the bank is misbehaving (possibly in coalition with other adversarial
users), it can compromise the correctness of the system, but not the anonymity. It is
possible to distribute the bank functionality among several parties in order to increase
fault tolerance and reduce any trust assumptions, but we will not describe this here.

Protocol Overview. Bank keeps the record of each peer’s reputation in the reputation
database. As shown on the left of Figure 1, a peer U (via his pseudonym PU ) can
increase the reputation of a pseudonym PM by giving a repcoin,1 which is basically an
e-coin. Bank manages the number of repcoins that each peer has using another database:
repcoin quota database.

Note that M does not deposit the repcoin using his identity. This is for the sake of
maintaining unlinkability between a pseudonym and a peer. If M directly deposited
the repcoin, collusion of Bank and U would reveal that M and PM are linked. In fact,
this shows the difficulty of realizing a secure reputation scheme: it is not obtained by
using an ecash scheme naively. To preserve unlinkability, we use a level of indirection.
When PM successfully deposits the repcoin, it gets a blind permission from Bank. The
blind permission is basically a blind signature, which therefore does not contain any
information about PM . So, M can safely deposit the permission.

We chose to employ an anonymous credential system (see Section 4) to construct
the reputation demonstration procedure (on the right side of Figure 1). The anonymous
credential enables M , via his pseudonym PM , to prove his membership in group Gi

anonymously. Thus, unlinkability between M and PM is maintained.
We also note that PM , instead of revealing its exact reputation value, shows the

membership of a group Gi. Demonstration of exact reputation value could allow an
attacker who continuously queries for the reputation of many pseudonyms — without
even needing to transact with them — to infer whether two pseudonyms correspond
to the same user. To make matters worse, with Bank’s collaboration, pseudonyms can
be linked to a limited number of identities that have the exact same reputation value

1 If M wants to increase of reputation of PU , they can carry out the same protocol with their
roles reversed.
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– Reputation granting process (left): (1) U withdraws a wallet W (i.e., repcoins) from the Bank
B. (2) U , via PU , awards (i.e., spends) a repcoin (S, π) to M . (3) M , via PM , deposits the
repcoin (S, π). (4) If the deposit is successful, PM obtains from B a blind permission σ.
Note that σ is blind to B and only visible to M . (5) M deposits σ, and B increases M ’s
reputation point.

– Reputation demonstration process (right): (1) M requests a credential for the group Gi. (2)
If M has enough reputation count for Gi, B issues a credential cred to M . (3) By using
cred, PM proves its membership of Gi to PU .

Fig. 1. Reputation granting and demonstration

with the pseudonym. On the other hand, grouping together identities which belong to
the same reputation level, makes small changes in reputation accounts invisible to other
pseudonyms. Bank can still see the changes that take place in peers’ reputations, but
cannot link them to specific pseudonyms any more. The reputation levels (i.e., groups
Gi) are defined as a system parameter. Reputation levels are not necessarily required
to be disjoint. One example would be that Gi contains peers who has more than 2i

different reputation values.

Punishing Misbehaving Parties. When modeling the security of the system, we aim to
achieve our goals (such as anonymity, no lying about reputation level, no over-awarding
reputations beyond the allowed limit, etc.) by rendering a break of the security computa-
tionally infeasible (modulo some standard cryptographic assumptions). However, some
security breaches are impossible to completely prevent. For example, as long as there is
no central party involved on-line in each transaction, a user can always award the same
reppoint twice to different parties. As another example, if anonymity and unlinkability
is to be preserved, a peer with a high reputation level can always give away all his data
and secret keys to another peer, allowing the latter to claim and prove the high reputa-
tion as his own. In these cases, we build into our model an incentive structure (similar
to previous work, e.g., [19]), whereby such security breaches would hurt the offender.
In particular, for the first case above, we require that a double awarding of a reppoint
would reveal the identity of the offender (which can then lead to consequences outside
of our model). For the second case, we require that in order for Alice to empower Bob,
who has a lower reputation level, to prove a reputation level as high as Alice’s, Alice
would have to effectively give Bob her master private key. This information may be
quite sensitive, especially if the private key used within the reputation system is the
same one used for a public-key infrastructure outside the system.
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3 A Model for Anonymous Reputation Systems

In this section, we present our model for anonymous reputation systems. We first enu-
merate the types of entities and the operations considered in the system, followed by the
security definition. The motivation and rationale for our model and choices were dis-
cussed in Section 2. We note that some of these definitions were inspired by previous
work on other primitives, such as [6,5].

3.1 Participating Entities

The entities in an anonymous reputation system are as follows.

• Peers. Peers are the regular users of a P2P network. A peer interacts with other
peers via pseudonyms of his choice and can be either a User (buyer) or a Merchant
in different transactions. Peers can award reputation points to other peers (through
their pseudonyms), and can show their reputation level to other peers.

• Bank. Bank manages information with respect to each peer’s reputation (where the
information is tied to actual identities — public keys — of peers, not to pseudonyms).
Specifically, it maintains three databases: the repcoin quota database (denoted
Dquota), the reputation database (denoted Drep), and the history database
(denoted Dhist).

Dquota holds the amount of repcoins that each peer is allowed to award to other
peers. When a peer withdraws a wallet of repcoins, the amount of his repcoin quota is
decreased correspondingly. Bank also replenishes all the peer’s account periodically,
as per system parameters (for example, every day each peer can award at most 20
repcoins to others; see the discussion in Section 2). Drep contains the amount of
reputation points that each peer has earned by receiving repcoins from other peers.
In order to prevent peers from double-awarding (awarding two peers with same-
serial-numbered repcoins), Dhist holds all the repcoins that are deposited.

3.2 Operations

The operations supported in our system are listed below. When an operation is an inter-
active procedure (or a protocol consisting of multiple procedures) between two entities
A and B, we denote it by 〈OA, OB〉 ← Pro(IC)[A(IA), B(IB)], where Pro is the name
of the procedure (or protocol). OA (resp. OB) is the private output of A (resp. B), IC is
the common input of both entities, and IA (resp. IB) is the private input of A (resp. B).
We also note that depending on the setup, some operations may require additional global
parameters (e.g., some common parameters for efficient zero-knowledge proofs, a mod-
ulus p, etc). Our system will need these additional parameters only when using under-
lying schemes that use such parameters, e.g., e-cash systems or anonymous credential
systems. To simplify notation, we omit these potential global parameters from the inputs
to all the operations.

• (pkB , skB) ← Bkeygen(1k) is the key generation algorithm for Bank.
• (pkU , skU ) ← Ukeygen(1k) is the key generation algorithm for peers. We call pkU the

(master) public key of U , and skU the master secret key of U .
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• (P, siP ) ← Pnymgen(1k) is the pseudonym generation algorithm for peers. The siP is the
secret information used to generate the pseudonym P .

• 〈W, D′
quota〉/〈⊥, ⊥〉 ← RepCoinWithdraw (pkB, pkU , n) [U(skU ), B(skB, Dquota)]. A

peer U tries to withdraw n repcoins (in the form of a wallet W ) from Bank B. Bank, us-
ing Dquota, checks if U is eligible for withdrawal. If so, the withdrawal is carried out and
Dquota is changed accordingly.

• 〈(W ′, S, π), (S,π)〉/〈⊥, ⊥〉← Award (PU , PM , pkB) [U(siPU , W, pkU , skU ), M(siPM )].
A peer U (via PU ), using his wallet W , gives a repcoin (S,π) to M (via PM ). Here S is a serial
number and π is the proof of a valid repcoin.

• 〈�, (D′
rep, D

′
hist)〉/〈⊥, ⊥〉 ← RepCoinDeposit (pkB, S, π) [M( PU , siPU , pkU , skU ), B(

skB , Drep, Dhist )]. A peer M deposits the repcoin into his reputation account. If the repcoin
(S, π) is valid and not double-awarded, then the coin is stored in the history database Dhist,
and the amount of reputation of pkM in Drep is increased by one.

• (pkU , ΠG)/⊥← Identify(S, π1, π2). If a repcoin is double-awarded with (S, π1) and (S, π2),
Bank can find the peer who double-awarded the coin using this operation. Here, ΠG is a proof
that pkU double-awarded the repcoin with the serial number S.

• �/⊥ ← VerifyGuilt(S, ΠG, pkU ) outputs � if the peer U (represented by pkU ) indeed
double-awarded the coin with the serial number S.

• 〈Cl
U , �〉/〈⊥,⊥〉 ← RepCredRequest (pkB, pkU , l) [U(skU ), B(skB, Drep)]. A peer U

requests a credential that will enable U to prove to another peer that he has reputation level
l. Bank B refers to Drep, and if U has sufficient reputation it issues a credential Cl

U . (As
discussed in Section 2, how exactly the reputation levels are defined is a system parameter).

• 〈�, �〉/〈⊥, ⊥〉← ShowReputation(PU1 , PU2 , pkB, l) [U1(skU1 , siPU1
, Cl

U1), U2(siPU2
)].

A peer U1 (via PU1 ) proves to U2 (via PU2 ) that he has reputation level l.

3.3 Security

In this section we define security for anonymous reputation systems.

Adversarial Model. We will consider two adversarial models, assuming the stronger
one for the anonymity-related security properties (unlinkability and exculpability), and
the weaker one for the reputation-handling properties (no over-awarding and reputation
unforgeability).

For the weaker adversarial model, we assume Bank is honest-but-curious, that is,
it follows the protocol specification correctly. All other peers may become malicious,
and behave in arbitrary ways in the protocol. Adversarial parties may collude with each
other, and as long as they are peers, they may decide to share any of their state or secret
information with each other, and coordinate their actions; Bank may share the content
of its maintained databases (Dquota, Drep, and Dhist), but not Bank’s secret keys (thus
it is meaningful for Bank to be honest-but-curious, even when in coalition with other
players).2

For the stronger adversarial model, we remove the honest-but-curious restriction on
Bank: we assume all parties (including Bank) may be corrupted, collaborating with
each other, and behaving arbitrarily.

2 Note that if we allowed Bank to share its secret keys and to behave arbitrarily, it could is-
sue more repcoins than allowed, generate reputation credentials that do not correspond to the
correct reputation level, etc.
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Correctness
• If an honest peer U1, who has enough repcoins in his repcoin quota, runs RepCoin-

Withdraw with an honest Bank B, then neither will output an error message; if the
peer U1, using the wallet (output of RepCoinWithdraw), runs Award with an hon-
est peer U2 (via his pseudonym), then U2 accepts a repcoin (S, π); if the peer U2

runs RepCoinDeposit with the honest Bank to deposit the repcoin (S, π) then U2’s
reputation in Bank will be increased by one.

• If an honest peer U1 runs RepCredRequest with an honest Bank and a reputation
level for which he is eligible, then U1 gets a valid credential. For a valid credential
Cl

U , its owner can always prove his reputation through ShowReputation(l, Cl
U , . . .)

procedure.

Unlinkability
For an adversary A who has corrupted certain parties including Bank, we say that a peer
U appears consistent with a pseudonym P to A, if U and P ’s owner are uncorrupted,
and if the levels for which P successfully invoked ShowReputation are a subset of
the levels for which U successfully invoked RepCredRequest. We now define the
following two unlinkability properties:

Peer-Pseudonym Unlinkability. Consider an adversary who, having corrupted some
parties including Bank, is participating in the system for some arbitrary sequence of
operations executed by honest and by corrupted parties. Given a pseudonym P that
does not belong to a corrupted party, the adversary can learn which peer owns P no
better than guessing at random among all non-corrupted peers that appear consistent
with P .

Pseudonym-Pseudonym Unlinkability. Consider an adversary who, having corrupted
some peers (but not Bank), is participating in the system for some arbitrary sequence of
operations executed by honest and corrupted parties. Given two pseudonyms P1, P2 that
do not belong to corrupted parties, the adversary has no advantage in telling whether
P1, P2 belong to the same peer or not. Next, consider an adversary who corrupted some
peers and Bank as well. Then the above requirement should hold as long as there are at
least two non-corrupted peers who appear consistent with both P1 and P2 (because if
there is only one such uncorrupted peer, clearly both pseudonyms belong to the same
one).

No Over-Awarding
• No collection of peers should be able to award more repcoins than they withdrew.

Suppose that n peers U1, . . . , Un collude together, and that the sum of the amount
of repcoins allowed to them is N . Then, the number of different serial numbers of
repcoins that can be awarded to other peers is at most N .

• Suppose that one or more colluding peers run the Award protocol with two
pseudonyms PM1 and PM2 such that PM1 gets (S, π1) and PM2 gets (S, π2). Then,
we require that Identify(S, π1, π2) outputs a public key pkU and a proof of guilt ΠG

such that VerifyGuilt(pkU , S, ΠG) accepts.
• Each repcoin that is accepted but not double-awarded in the Award protocol in-

creases exactly one reputation point in the database Drep irrespective of the bene-
ficiary of the repcoin. However, we don’t regard it as a breach of security when a
peer M1 received a repcoin but passed it to M2, who deposited it into his reputation
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account; in any event, this is just another form of collusion. Another justification is
that the peer M1 sacrifices one reputation point.

Exculpability
This property is to protect the honest peer from any kind of framing attack against him.
No coalition of peers, even with Bank, can forge a proof ΠG that VerifyGuilt(pkU , S,
ΠG) accepts where pkU is an honest peer U ’s public key who did not double-award a
repcoin with the serial number S.

Reputation Unforgeability
• No coalition of peers, where l is the highest reputation level of any one of them, can

show a reputation level higher than l for any of their pseudonyms. This implies as a
special case that a single peer cannot forge his reputation.

• Consider a peer U with reputation level l, who owns a pseudonym P . Suppose that
some coalition of peers has empowered U with the ability to prove that P has repu-
tation level l′ > l. Let Bad be the set of peers with reputation level at least l′ among
the coalition (note that by the previous requirement, there must be at least one peer
in Bad). Then, it must be that U can learn the master secret key of a peer U ′ ∈ Bad.

4 Building Blocks of Our Scheme

Anonymous Credential Systems. In anonymous credential systems — see, for ex-
ample, [19,6,3] — there are three types of players: users, organizations, and verifiers.
Users receive credentials, organizations grant and verify the credentials of users, and
verifiers verify credentials of the users. Below are the supported procedures.

• (pkO, skO) ← AC.OKeyGen(1k). Key generation algorithm for an organization. (pkO, skO)
denotes the key pair of the organization O.

• (pkU , skU ) ← AC.UKeyGen(1k). Key generation algorithm for a user. (pkU , skU ) denotes
the key par of the user U . Sometimes skU is called the master secret key of U .3

• 〈(N, NSecrN ), (N, NLogN )〉 ← AC.FormNym(pkO) [U(skU ), O(skO)]. Nym 4 genera-
tion protocol between U and O, where N is output nym, NSecrN is secret information with
respect to N , and NLogN is the corresponding log on the organization side.

• 〈credN , CLogcredN
〉← AC.GrantCred(N, pkO) [U(pkU , skU , NSecrN ), O(skO, NLogN )].

Credential granting protocol, where credN is a credential for the nym N , and CLogcredN
is the

corresponding log on the organization side.
• 〈�, �〉/〈⊥, ⊥〉 ← AC.VerifyCred(pkO) [U(N, credN ), V ]. Credential verification proto-

col.
• 〈�, �〉/〈⊥, ⊥〉 ← AC.VerifyCredOnNym (N, pkO, pkO1) [U(N1, credN1), O(NLogN )].

In this protocol, U proves to O that N is his valid nym issued by O and that credN1 on the
nym N1 issued by O1.

3 Anonymous credential systems do not typically require a specific form for the master public
and secret keys, but assume it is inherited from some PKI, where users are motivated to keep
their secret key secret. In other variations of anonymous credential systems (with all-or-nothing
non-transferability) there is no master public key. Our scheme can be adapted to such systems
as well.

4 Usually, nym and pseudonym are used interchangeably. But to avoid confusion with the term
pseudonym in our reputation scheme, we stick to the term nym in anonymous credential
systems.
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Secure anonymous credential systems satisfy the following conditions (see [19,6,3]
for more details): (1) Unique User for Each Nym. Even though the identity of a user
who owns a nym must remain unknown, the owner should be unique. (2) Unlinkability
of Nyms. Nyms of a user are not linkable at any time with a probability better than
random guessing. (3) Unforgeability of Credentials. A credential may not be issued
to a user without the organization’s cooperation. (4) Consistency of Credentials. It is
not possible for different users to team up and show some of their credentials to an
organization and obtain a credential for one of them that the user alone would not have
gotten. (5) Non-Transferability. Whenever Alice discloses some information that allows
Bob to user her credentials or nyms, she is effectively disclosing her master secret key
to him.

E-Cash. An e-cash system consists of three types of players: the bank, users and mer-
chants. Below are the supported procedures (see [5]).

• (pkB , skB) ← EC.BKeyGen(1k) is the key generation algorithm for the bank.
• (pkU , skU ) ← EC.UKeyGen(1k) is the key generation algorithm for users.
• 〈W, �〉 ← EC.Withdraw(pkB, pkU , n) [U(skU ), B(skB)]. The user U withdraws a wallet

W of n coins from the bank.
• 〈W ′, (S, π)〉 ← EC.Spend(pkM , pkB, n) [U(W ), M(skM )]. The user U spends a coin by

giving it to the merchant M . U gets the updated wallet W , and M obtains a coin (S,π) where
S is a serial number and π is a proof.

• 〈�/⊥, L′〉 ← EC.Deposit(pkM , pkB) [M(skM , S, π), B(skB, L)]. M deposits (S, π) into
its account in the bank B. L′ is the updated list of the spent coins (i.e., (S, π) is added to the
list).

• (pkU , ΠG) ← EC.Identify(S,π1, π2). Given two coins with the same serial number, i.e.,
(S, π1) and (S, π2), B finds the identity of the double-spender pkU and the corresponding
proof ΠG.

• �/⊥ ← EC.VerifyGuilt(S, pkU , ΠG). It verifies the proof ΠG that the user pkU is guilty of
double-spending coin S.

Secure e-cash scheme satisfies the following condition: (1) Correctness. If an honest
user runs EC.Withdraw with an honest bank, then neither will output an error mes-
sage. If an honest user runs EC.Spend with an honest merchant, then the merchant
accepts the coin. (2) Balance. No collection of users and merchants can ever spend
more coins than they withdrew. (3) Identification of double-spenders. Suppose the bank
B is honest, and M1 and M2 are honest merchants who ran the EC.Spend protocol
with the adversary whose public key is pkU . Suppose the outputs of M1 and M2 are
(S, π1) and (S, π2) respectively. This property guarantees that, with high probability,
EC.Identify(S, π1, π2) outputs a key pkU and proof ΠG such that EC.VerifyGuilt(S,
pkU , ΠG) accepts. (4) Anonymity of users. The bank, even when cooperating with any
collection of malicious users and merchants, cannot learn anything about a user’s spend-
ings other than what is available from side information from the environment. (5) Ex-
culpability. When S is a coin serial number not double-spent by user U with public key
pkU , the probability that EC.VerifyGuilt(S, ΠG, pkU , n) accepts is negligible.

Blind Signatures. Blind signatures have two types of players: the bank and the users. A
user requests the bank to generate a signature on a message m. Then the bank generates
a signature without knowing the message m. Below are the supported procedures (see
[14]).
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• (pkB , skB) ← BS.KeyGen(1k). Key-generation algorithm for the bank B.
• 〈�/⊥, σ/⊥〉 ← BS.Sign(pkB)[B(skB), U(m)]. Signing protocol.
• �/⊥ ← BS.Verify(m, σ, pkB). Verification algorithm.

Secure blind signature scheme satisfies the following conditions: (1) Unforgeability.
Only the bank who owns the secret key skB can generate valid signatures. (2) Blindness.
The bank B does not learn any information about the message m on which it generates
a signature σ.

5 Anonymous Identity-Bound Reputation System

In this section we describe a general scheme based on any implementation of the build-
ing blocks. See Appendix A for a specific instantiation of the scheme.

E-cash schemes will be used for the implementation of repcoins, blind signatures
will be used in repcoin-withdraw and reputation-update procedures, and anonymous
credential systems will be used for the reputation-demonstration procedures. As we
shall see, while the first two are used in a relatively straight-forward manner, the last
one is used in a more complex way, since the reputation demonstration setting presents a
new type of hurdle to overcome if unlinkability is to be achieved even against colluding
bank and peers.

Underlying Protocols and Requirements. Our scheme will work with any implementa-
tion of these underlying primitives, as long as the master public and secret keys for peers
in our system are of the same form as those in the underlying e-cash scheme and anony-
mous credential system. That is, the key generation algorithms Ukeygen, EC.UKeyGen,
and AC.Ukeygen are all the same.5

Our scheme will also require a zero knowledge proof of knowledge of both the mas-
ter secret key corresponding to a master public key, and the secret information of a
nym’s owner (which is given as an output of the AC.FormNym operation). Thus, when
instantiating our scheme with specific primitives, it is useful to choose underlying prim-
itives that admit efficient proofs of this form (as we do in the Appendix A).

Setup. We start with the setup procedure on Bank’s side.

- Bank B executes EC.BKeyGen procedure of e-cash scheme to create a digital sig-
nature key-pair (pkB, skB). This is the key-pair that will be used for creating the
repcoins. Bank publishes pkB .

- B executes BS.BkeyGen procedure of blind signatures scheme to create a blind
signature key pair to be used in the Reputation Deposit procedure (pkb

B , skb
B). Bank

publishes pkb
B .

- B defines fixed reputation levels li, represented by a group Gi. These “reputation”
groups — although managed by Bank — play a role similar to the one organizations
play in anonymous credential systems. For each one of these groups, Bank runs
AC.OKeyGen protocol to generate public-secret key pairs (pkGi ,skGi). Bank also
publishes pkGis.

5 As discussed in Section 2, an important part our system setup is the assumption that peers are
motivated to keep their master private key secret. For this reason, it is beneficial to have the
master public and private keys be part of an external PKI which is used for other purposes
(e.g., signing documents) outside our system.
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- B does the appropriate setup (if any) for the pseudonym generation. For example,
this may involve selecting an appropriate algebraic group Gp.

On the peers’ side, each peer Ui invokes EC.UKeyGen to create a master public-secret
keypair (pkUi , skUi).

Operations. As mentioned, we assume that messages are exchanged through perfectly
secure channels. The system operations are realized as follows.

1. Generation of Pseudonyms. Each peer generates his own pseudonyms. There is
no particular structure imposed on the pseudonyms, and they need not be certified or
registered with Bank (or any other entity). The only requirement is that the pseudonym
generation leaves the owner with some secret information (e.g., the random string used
for the generation procedure), such that possession of this information proves ownership
of the pseudonym. We will also need such a proof to be executed. Thus, in principle,
we can simply use a random string r as the secret information and P = f(r) as the
pseudonym, where f is some one-way function, with an associated zero-knowledge
proof of knowledge of the inverse of P . However, a more efficient solution is to let the
pseudonym generation procedure to be a digital signature key generation, keeping the
signing key as the secret information and the verification key as the pseudonym. Here,
being able to produce valid signatures will prove ownership of the pseudonym, without
a need for a zero-knowledge proof.

2. RepCoin Withdrawal. RepCoin Withdrawal takes place between Bank B and a peer
U . Both U and B engage in EC.Withdraw procedure of a e-cash scheme. For simplicity
purposes, we assume that a wallet W of n repcoins has been withdrawn. Since the only
properties related to repcoins are anonymity of an honest withdrawer and repudiation of
any double spender, the wallet can be like the one suggested in [5], or n separate digital
coins withdrawn through any known e-cash scheme.

3. Reputation Award. This procedure is executed between two pseudonyms, one (i.e.,
PU ) belonging to a peer U and one (i.e., PM ) belonging to a peer M . Both engage
in EC.Spend protocol of a e-cash scheme. However, this protocol takes place strictly
between the two pseudonyms PU and PM instead of involving the actual identities U
and M . Thus, PU gives a repcoin to PM , where no information about identities of the
parties involved is revealed.

4. Reputation Update. This protocol is invoked when a peer M wants to increase his
reputation based on the repcoins that his pseudonyms have received since the last time
he updated his reputation record. As previously discussed, maintaining unlinkability
between a pseudonym and its owner is a crucial feature of our system. Towards this
end, a single interaction for update (with a merchant presenting himself to Bank either
as a peer or as a pseudonym) will not work, as we explain below.

Assume peer M wants to deposit a repcoin he received as PM from pseudonym
PU of User U . Note that no one except M knows who is the owner of PM . Given the
fact that U knows the exact form of the repcoin he gave to M , if M tried to deposit
the repcoin by presenting himself as M to Bank, a collusion of Bank and U would
reveal that M is the owner of PM . Trying to solve this by letting M “rerandomize” the
repcoin in some way before depositing it presents problems for enforcing the no over-
awarding requirement. On the other hand, if Reputation Update procedure was done by
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the pseudonym PM of M , there would be a problem in persuading the Bank to update
M ’s record without revealing that M is the owner of PM .

Therefore, our Reputation Update protocol has two stages. First, PM contacts Bank
and gets a blind permission from it that shows a repcoin has been deposited and is valid.
Second, M deposits that blind permission. In particular, the following procedure takes
place:

4.1 Obtaining Blind Permission. Peer M executes EC.Deposit procedure of e-
cash scheme using his pseudonym PM , but here the actual deposit does not happen.
Rather, if Bank B accepts the repcoin, M gets from B a blind signature on a random
message. That is, PM sends to B a repcoin that it has received. If B accepts the coin
as valid, PM chooses a random message C and gets a blind signature of C: σb

B . We
call (C, σb

B) a blind permission.
4.2 Deposit of the Blind Permission. M sends B the permission (C, σb

B). Then,
B checks if the tuple is fresh and increases the reputation of M .

5. Reputation Demonstration. This protocol is invoked when one peer wants to demon-
strate his reputation to another peer, both interacting strictly through their pseudonyms.
We will utilize predefined groups Gi corresponding to reputation levels li, which are
managed by Bank. For a peer U who wants, via PU , to prove his reputation level li to a
pseudonym PV of a peer-verifier V , the protocol proceeds as follows:

- If he has not done it before, U contacts the bank to register in the group Gi that
corresponds to the desired reputation level li. U interacts with Gi (Bank) by invoking
AC.FormNym protocol of a anonymous credential system, in order to generate a
nym N li

U for U under that group.6 (U can generate as many nyms as he wants.)
- U contacts Gi, providing its master public pkU key and a zero knowledge proof

of knowledge π that he possesses the corresponding master secret key skU . U also
presents N li

U and a zero-knowledge proof πN that it has been created correctly and
he is the owner.

- Gi checks that U is valid and that his reputation is indeed in that group (or higher),
and executes AC.GrantCred to generate a credential Cli

N for N li
U .

- U interacts with the verifier PV under his pseudonym PU . PU proves by execut-
ing AC.VerifyCred that he possesses a credential from group Gi. Specifically, PU

proves that its owner has registered under a nym to Gi and has acquired — through
that nym — a credential of membership.

5.1 Security

The following theorem states the correctness and security of our general scheme. For
lack of space, we refer the reader to our technical report [1] for proofs.

6 Recall that there is a big difference between pseudonyms and nyms. As discussed before,
Pseudonyms are public-secret key-pairs, used as means to preserve peers’ anonymity when
involved in transactions. A nym of a peer will be associated with a particular reputation group.
Bank, as the manager of the reputation groups, will be able to link the nyms with the peer iden-
tities (master public key). In contrast, unlinkability of peers and pseudonyms is maintained, as
per our security definitions.
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Theorem 1. If the underlying primitives (anonymous credential system, e-cash system,
and blind signatures) are secure, then our scheme satisfies correctness, peer-pseudonym
unlinkability, pseudonym-pseudonym unlinkability, no over-awarding, exculpability,
and reputation unforgeability.

5.2 Practical Issues

In the absence of a concrete implementation, it is hard to make concrete statements
about practical issues. Furthermore, our main result is a framework which can acco-
modate different algorithms That said, there are at least two areas that deserve further
attention, performance and system security.

In general, our protocol is neither real-time nor high-performance. We are not
proposing per-packet operations; most of what we do is per-user or per-purchase. As
such, real-time performance is not critical; in particular, there are no bottleneck nodes.

A full performance analysis is given in [1]. Here, we note that all of our primitive
operations are O(1) in system size. That is, there are no design elements in our scheme
whose performance degrades as the size of the system increases. Similarly, no operation
takes more than a few messages; all are O(k + w) in message size, where k and w are
security parameters. More details for our specific instantiation are given in Appendix A.

In addition to the anonymous peer-to-peer communication necessary for the underly-
ing application, there is now a new communications path: from each party to the bank.
Parties who are engaging in our protocol will need to contact the bank. This provides
another channel that might be detected by, say, the attacks described in [15]. Indeed,
there may exists a sort of “meta-intersection attack” [9]: the peer-to-peer traffic alone
may not be suspicious, but it when coupled with conversations with the bank might be
sufficient for identification.

A second area for security concern is CPU consumption. Our scheme (see Ap-
pendix A) requires public key operations; these are CPU-intensive. An attacker who
has identified a candidate participant in real-time might be able to connect to it — we
are, after all, talking about peer-to-peer systems — and measure how long its own com-
munications take. The obvious defense is to make sure that any given operation takes
constant time; in turn, this likely means preconfiguring each peer node with a maximum
number of concurrent connections supported.

6 Related Work

A number of papers have addressed the issue of reputation and privacy.
There are many papers on reputation systems for peer-to-peer networks. Most focus

on building distributed reputation systems, rather than worrying about privacy; [12] is
typical.

The difficulty of building systems like this is outlined by Dingledine, Mathewson,
and Syverson [10]. They present a number of similar systems and show why bolting on
reputation is hard.

A typical approach is typified by [26], who incorporate privacy into their scheme.
However, their system does not provide unlinkability. It also requires a trusted “ob-
server” module for full functionality.
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The work by Kinateder et al. [16,18] is close to ours. The system in [16] differs from
ours in two notable ways. First, its reputations are linkable. Indeed, they see this as a
virtue, in that recommendations can be weighted depending on the reputation of the rec-
ommender. Second, they assume a trusted hardware module (i.e., a TPM chip) on every
endpoint. In [18], they describe a more general system based on UniTEC [17]. Reputa-
tion statements are signed by a pseudonym’s private key. Unlinkability is achieved by
switching public keys. Apparently, the UniTEC layer can share reputations between dif-
ferent pseudonyms, but the authors do not explain how this is done. Presumably, this is
handled by bookkeeping at that layer. More seriously, although they assert that a trusted
module is desirable but not necessary, they do not explain how that could work, and in
particular how they can prevent cheating.

Pavlov et al. [22] present a system, based on secret-sharing, which has many of the
same properties as ours. However, it depends on locating “witnesses”, other parties with
knowledge of the target’s reputation. In a sufficiently-large community with a low den-
sity of interaction, this may be difficult. Furthermore, it does not provide unlinkability;
witness testify about a known party’s past behavior.

Another work related to ours is Voss [25] and Steinbrecher [23]. In both of the sys-
tems, users interact with each other through pseudonyms, and reputation is strongly con-
nected to identities. In fact, in [25] reputation points are implemented as coins, which
may have positive or negative value. However, in both cases, Trusted Third Parties7 are
required to ensure unlinkability between identities and pseudonyms.

Approaches other than reputation systems have also been presented to deal with mis-
behaving users in anonymous or pseudonymous systems. Belenkiy et al. [2] make use
of endorsed e-cash to achieve fair and anonymous two-party protocol wherein parties
buy or barter blocks of data. Whereas e-cash stands for reputation in our scheme, e-cash
stands for actual money in their scheme; a peer uses e-cash to buy data from other peers.
Johnson et al. [13] focus on protecting a service in Tor from a malicious user without
blocking all the exit Tor nodes. In particular, they present a protocol where misbehaving
anonymous users are blacklisted by servers.

7 Future Directions

A few interesting open problems remain.
First, our current scheme uses unit coins for reputation. That is, all reputation credits

are worth the same amount. It would be nice to permit variable values; we suspect that
this is easy.

More seriously, we do not have negative feedback. There is a vast difference be-
tween knowing that a seller has performed well on m transactions and knowing that
that seller has performed well on m out of n. The difficulty is forcing the seller to com-
mit to depositing a coin indicating bad behavior; most sellers know when they have
done something wrong. In the technical report [1], we developed a partial solution.
The scheme does not satisfy the complete unlinkability requirement stipulated in our
definition, as Bank knows the number of transactions a peer had interacted in as a seller
(modulo this information being leaked, all anonymity requirements are preserved).

7 In [23] TTP appear in the form of designated identity providers.
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Finally, we would like to get rid of the bank, which in our scheme is trusted to main-
tain reputation balances correctly (though not trusted from the privacy perspective). A
fully decentralized scheme would eliminate single points of failure, and would be more
in keeping with a widespread, anonymous, peer-to-peer network. Note that this would
require two significant changes: using a digital cash scheme that does not require a
central bank, and devising some other mechanism for inflation resistance.
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Making p2p accountable without losing privacy. In: WPES, pp. 31–40 (2007)

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive
anonymous credentials. In: TCC, pp. 356–374 (2008)

4. Bhattacharjee, R., Goel, A.: Avoiding ballot stuffing in ebay-like reputation systems. In:
P2PECON, pp. 133–137 (2005)

5. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)

6. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

7. Camenisch, J., Stadler, M.: Effcient group signature schemes for large groups. In: Kaliski Jr.,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

8. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM 24(2), 84–88 (1981)

9. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on anonymity sys-
tems. In: Information Hiding, pp. 293–308 (2004)

10. Dingledine, R., Mathewson, N., Syverson, P.: Reputation in p2p anonymity systems. In:
Workshop on Economics of Peer-to-Peer Systems (2003)

11. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion router. In:
USENIX Security Symposium, pp. 303–320 (2004)

12. Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks. In: NOSS-
DAV (2003)

13. Johnson, P.C., Kapadia, A., Tsang, P.P., Smith, S.W.: Nymble: Anonymous ip-address block-
ing. In: Privacy Enhancing Technologies, pp. 113–133 (2007)

14. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended abstract). In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997)

15. Kesdogan, D., Agrawal, D., Pham, V., Rautenbach, D.: Fundamental limits on the anonymity
provided by the mix technique. In: S&P, pp. 86–99 (2006)

http://www.cs.columbia.edu/research/publications


Reputation Systems for Anonymous Networks 217

16. Kinateder, M., Pearson, S.: A privacy-enhanced peer-to-peer reputation system. In: EC-Web,
pp. 206–215 (2003)

17. Kinateder, M., Rothermel, K.: Architecture and algorithms for a distributed reputation sys-
tem. In: Nixon, P., Terzis, S. (eds.) iTrust 2003. LNCS, vol. 2692, pp. 1–16. Springer, Hei-
delberg (2003)

18. Kinateder, M., Terdic, R., Rothermel, K.: Strong pseudonymous communication for peer-to-
peer reputation systems. In: SAC, pp. 1570–1576 (2005)

19. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: SAC, pp. 184–199
(1999)

20. Okamoto, T.: Provably secure and practical identification schemes and corresponding signa-
ture schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer,
Heidelberg (1993)

21. Øverlier, L., Syverson, P.F.: Locating hidden servers. In: S&P, pp. 100–114 (2006)
22. Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized additive reputa-

tion systems. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995,
pp. 108–119. Springer, Heidelberg (2004)

23. Steinbrecher, S.: Design options for privacy-respecting reputation systems within centralised
internet communities. In: SEC, pp. 123–134 (2006)

24. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion routing.
In: IEEE Symposium on Security and Privacy, pp. 44–54 (1997)

25. Voss, M.: Privacy preserving online reputation systems. In: International Information Secu-
rity Workshops, pp. 245–260 (2004)

26. Voss, M., Heinemann, A., Muhlhauser, M.: A privacy preserving reputation system for mo-
bile information dissemination networks. In: SECURECOMM, pp. 171–181 (2005)

A An Example of Scheme Instantiation

In this section we give a specific instantiation of our scheme, where we make use of
the anonymous credential system by Camenisch and Lysyanskaya [6] (denoted by CL),
the e-cash scheme by Camenisch et al. [5] (denoted by CHL), and the blind signature
scheme by Okamoto [20] (denoted by Ok). We do so in order to present a concrete
and efficient construction (we include the efficiency analysis, relying on that of the
underlying primitives, with each of the operations).

Setup(1k)
Bank B does the setup as follows:

- B executes CHL.BKeygen(1k) to generate an e-cash key pair (pkec
B , skec

B ), and pub-
lishes pkec

B = (gec, ĝec, g̃ec).
- B executes Ok.KeyGen(1k) to generate a blind signature key pair (pkbs

B , skbs
B ) and

publishes pkbs
B .

- For each reputation group Gi (1 ≤ i ≤ k), B executes CL.OKeyGen(1k) to gen-
erate the anonymous credential system key pair (pkaci

B , skaci

B ) for Gi, and publishes
pkaci

B = (naci , aaci , baci , daci , gaci , haci).
- B creates a cyclic group Gp = 〈gp〉 of order p = Θ(2k) where the DDH assumption

holds. This algebraic group is used for pseudonym generation on the peer’s side.

On the peers’ side, each peer U executes CHL.UKeyGen(1k) to obtain (pkU , skU )
= (gxU

ec , xU ), and publishes pkU . Note that xU will be used as the master secret key of
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U in the anonymous credential system (and this discrete-log based key is a reasonable
choice for a more general PKI key as well).

Operations

1. Generation of Pseudonyms. Each peer generates his pseudonyms locally using Gp.
Specifically, he chooses a random number ri ∈ Zp and compute gri

p . The value gri
p is

considered a pseudonym P i
U of peer U .

2. RepCoin Withdrawal. A peer U executes CHL.Withdraw with Bank, and obtains a
wallet W of 2w repcoins. This procedure takes O(1) exponentiations and O(1) rounds.

3. Reputation Award. A pseudonym PU gives a repcoin to PM by executing CHL.
Spend with PM . This procedure also takes O(1) exponentiations and O(1) rounds.

4. Reputation Update.

4.1 Obtaining Blind Permission. A pseudonym PM and Bank B participate in
CHL.
Deposit protocol, which takes O(1) exponentiations and O(1) rounds. If CHL.
Deposit accepts, PM acquires the blind permission σbs

B = Ok.Sign(skbs
B , rperm)

where rperm is a random message. Obtaining the blind permission takes O(1) expo-
nentiations and O(1) rounds.
4.2 Deposit of the Blind Permission. M (the owner of PM ) sends σbs

B to B.
B checks if the permission (rperm, σbs

B ) is fresh; if so, it increases M ’s reputation
value. This procedure takes O(1) exponentiations and O(1) rounds.

5. Reputation Demonstration. Suppose that a pseudonym PU asks PM to demonstrate
its reputation level, and that M (the owner of PM ) wants to show to PU that it belongs
to Gi, i.e., his reputation is at least at level li.

- Obtaining a nym under Gi. M contacts Bank B and executes CL.FormNym with
respect to Gi

8. Let N li
M be the nym that M obtained from this procedure. Note that

N li
M is of the form: gxU

aci
· hr

aci
. This takes O(1) exponentiations and O(1) rounds.

- Obtaining a credential for Gi. M contacts B, and he sends B the message (pkM ,
N li

M ). Then, M executes with B a zero-knowledge proof of knowledge

PK{(α, β) : pkM = gα
ec, N

li
M = gα

aci
· hβ

hi
}.9

This takes O(1) exponentiations and O(1) rounds.
Now, B verifies the proof. If the proof is verified so that M is eligible for a creden-

tial of the group Gi, B executes the CL.GrantCred (protocol4) with respect to Gi.
Let Cli be the output credential. This takes O(1) exponentiations and O(1) rounds.

- Showing reputation using the credential. PM contacts PU and executes CL.
VerifyCred (protocol3) with respect to Gi to prove that owner of PM has a creden-
tial for the group Gi. This takes O(1) exponentiations and O(1) rounds.

8 We use both protocol1 and protocol6 of [6] instead of just protocol1 to ensure the non-
transferability of credentials.

9 This proof can be parsed as “I know the exponent α and β that was used in generating pkM

and N li
M ”. See [7,6] for more detail. The proof can be regarded as an authentication procedure.
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Abstract. Despite the growth of the Internet and the increasing concern
for privacy of online communications, current deployments of anonymiza-
tion networks depend on avery small set of nodes that volunteer their band-
width. We believe that the main reason is not disbelief in their ability to
protect anonymity, but rather the practical limitations in bandwidth and
latency that stem from limited participation. This limited participation,
in turn, is due to a lack of incentives to participate. We propose providing
economic incentives, which historically have worked very well.

In this paper, we demonstrate a payment scheme that can be used
to compensate nodes which provide anonymity in Tor, an existing onion
routing, anonymizing network. We show that current anonymous pay-
ment schemes are not suitable and introduce a hybrid payment system
based on a combination of the Peppercoin Micropayment system and a
new type of “one use” electronic cash. Our system claims to maintain
users’ anonymity, although payment techniques mentioned previously –
when adopted individually – provably fail.

1 Introduction

Anonymous networking has been known since 1981 [1]. A more practical scheme,
Onion Routing, was first described in 1995 [2]. Currently there is little practical
use of network anonymity systems. Some of the problem is undoubtedly socio-
logical: most people do not feel the need to protect their privacy that way; this
is one reason that companies such as Zero Knowledge Systems [3, 4] and Digi-
cash [5] failed. Another problem, though, is that strong anonymity against traffic
analysis requires cooperation by and implicit trust in many different parties. Any
single entity, no matter how trustworthy it appears, can be subverted, whether by
technical means, corrupt personnel, or so-called “subpoena attacks”. All known
solutions require, and in fact enforce, routing through multiple parties. This,
though, introduces another problem: economic incentives. In a single-provider
anonymity scheme, that problem is conceptually simple: the party desiring pri-
vacy pays a privacy provider. This payment can be protected by digital cash [6].
Unfortunately, in a multi-provider Mixnet or onion routing network, the problem
is more complex, since each party must be paid. By examining existing digital
cash schemes, we show that they do not provide the necessary cost or privacy

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 219–236, 2008.
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properties required to maintain anonymity. For example, in Chaum’s original
e-cash scheme [6] a double-spender’s identity is exposed. This is perfectly ac-
ceptable – double-spending is a form of cheating that should be punished – but
in the context of an onion routing network, detecting double spending gives an
adversary clues to path setup.

To address these problems, we propose a novel hybrid payment scheme by
combining features from Micali’s micropayment system [7] and a lightweight,
blind signature-based e-cash scheme. Our goal is to create incentives for the
network participants to act in a cooperative manner based on their personal
interests. We show that any solution must be sound in several dimensions. First,
it must protect privacy. This is not trivial; witness the many (partial) attacks
on various anonymous networking protocols [8, 9]. That said, we do not claim
to have fixed those problems. Rather, our aim is avoid introducing any new
vulnerabilities that stem from the payments scheme.

Second, we want a system that is in principle deployable. That is, though we
assume such things as anonymous payment systems, we do not assume, for exam-
ple, incorruptible banks. More importantly, we want a system that is compatible
with known economic behavior. Therefore, while our system assumes that people
are willing to pay for privacy, we want a system where customer payment – the
profits of forwarding nodes – are related to privacy desired and effort expended.
In essence, there must be a profit motive and the opportunity for market forces
to work. To deter exploitation of the payment scheme, we provide mechanisms to
detect cheaters: those parties who accept payment but do not provide services.

Third, we do not attempt to achieve absolute financial security. Instead, we are
willing to accept small amounts of cheating, by senders or forwarders, as long as
the amount is bounded and limited (possibly with some trade-off) by the party
who is exposed to loss. Finally, we want a system that is acceptably efficient in
practice and does not impose unreasonable resource consumption. To that end,
we evaluate the operations of a prototype PAR – which stands for Payment for
Anonymous Routing. Our initial performance evaluation indicates that PAR is
highly configurable and can operate with acceptable communication and CPU
overhead. As opposed to previous work on incentivised anonymity, which used
mixnets ([10], [11], [12]), our system guarantees usable efficiency, accountability
and maintains anonymity against traffic analysis attacks.

2 System Considerations

We will examine current anonymizing networks and payment schemes and show
why current payment schemes, when applied to onion routing schemes, fail to
maintain anonymizing network properties, while our hybrid scheme succeeds.
Furthermore, we set up the threat model and we identify the individual com-
ponents and the properties required by a payment scheme to provide the same
protection the network anonymity system was designed for.

Anonymizing Network. An anonymizing network is a particular type of peer-
to-peer network, in which peers communicate anonymously. Anonymizing
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Fig. 1. The PAR architecture combines an onion routing anonymity network (Tor)
with a payment scheme. Each node T1, T2, T3, · · · , TL, where L is the path length, in
the path from the sender to the receiver receives payment in coins for its service.

networks aim to offer sender anonymity even against the recipient as well as
sender-receiver unlinkability. Neither the recipient nor any other participant
should be able to detect the actual sender with a better probability than se-
lecting the sender at random. As a proof of concept, we use Tor [13], the second
generation onion routing anonymity network, a well-known and deployed net-
work anonymity system.

Adversarial Model. The participating entities of our system are the Tor re-
lays, the outside users, and a clearance entity, i.e. a Bank, where monetary
units are deposited/withdrawn. We inherit Tor’s local adversary model where
users can only observe the traffic going through them and a limited amount of
the rest of the network traffic. In addition, we assume that malicious users can
manipulate any packet going through them and use this information to compro-
mise anonymity. The Bank, on the other hand is assumed “honest but curious”.
Therefore, although trusted to be honest in all of its functional operations –
cash withdraw and deposit – the Bank can collaborate with any number of users
in order to disclose the initiator of a communication or active communication
paths. We do not consider covert channels for anonymous communication with
routers without paying as a part of our threat model.

System Requirements. Our primary requirement is that the overall system
should maintain the anonymity provided by Tor even when the payment deposit
information is exposed to a third party including the Bank. Anonymity, how-
ever, should not be achieved at the expense of efficiency. Moreover, the payment
scheme should meet the requirement necessary for any payment system such as
accountability, correctness, and robustness.

Payment Analysis. For our analysis, we classify current payment
schemes in two categories: Identity-bound payments and Anonymous payments.
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In Figure 1, the sender provides payment for all nodes T1, T2, T3, · · · , TL
1 that

forward the sender’s traffic to the receiver. We will show that both of the current
payment schemes, when applied to a Tor network, render the anonymity system
vulnerable to attacks that compromise the anonymity of the senders.

Identity-bound Payment Schemes. Identity-bound payments constitute signed
endorsements from the payer to the payee. Accountability and robustness are
the two main features of this class. The micropayment scheme [7] is an example
of an Identity-bound payment. It was designed to be efficient for small, online
transactions. When used to pay Tor nodes, identity-bound payments provide
immediate accountability because invalid payments from any entity can be eas-
ily accounted for. However, when applied in the context of the Tor network,
this property has adverse implications: upon clearance, the Bank obtains global
knowledge about all transactions in the anonymity network. If the sender uses
his own coins to pay the nodes in the path, his identity is exposed to them.
Therefore, any node in the path to the receiver can identify him with the help of
the Bank. To make things worse, the last node in the path – who may suspect
that he is the last node if the receiver is outside Tor – can link the sender to the
receiver. A potential way to work around this problem is to distribute payments
only to immediate neighbors. With this payment strategy, the sender pays TL

with L coins, TL pays TL−1 with L−1 coins etc. This approach makes path trac-
ing much harder and leaks less information but it is far from secure: deposits
made by the sender to the first Tor node are still available to the Bank. Counting
the coins bound to the sender’s identity, the Bank can infer with high confidence
the number of packets communicated to the sender and link the sender to the
receiver. This analysis indicates that having identity-bound coins reveals too
much information, enabling an adversary with access to payment information to
break the system’s anonymity using simple inference techniques.

Anonymous Payment Schemes. In this scheme, the payment does not carry any
identification information of its initial owner. Chaum’s Digital cash [6] and the
later versions [14, 15, 16] of Tunstall et al. and Camenisch et al. are perfect
examples of such anonymous payment schemes. In the general case of digital cash
systems, a user withdraws money from a Bank, which he can only spend himself
and which when legally spent can never be linked to his identity. Merchants
deposit the coins they have received to check whether any of them has been spent
more times than its nominal value (double-spending). If the later occurs, the
identity of the double-spender is revealed. However, all the anonymous payment
schemes demand excessive communication overhead for each transaction because
there are a lot of messages that need to be exchanged between the sender and the
path nodes.2 This requirement makes e-cash schemes impractical for our system.

1 In Tor, intermediate communication path nodes are chosen randomly by the com-
munication initiator.

2 In the compact e-cash payment scheme [16], which is considered efficient a single
“spend” procedure in e-cash systems would requires at least two rounds of message
exchange between the sender and every node in the path.
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An alternative solution would be for all users to withdraw a special kind
of anonymous coin from the Bank, which can simply be Bank blind endorse-
ments [17], and use these coins to pay the intermediate Tor nodes. Ideal as
it might initially seem, using a completely anonymous payment scheme with
Tor has its drawbacks. First of all, there is no immediate accountability, since
double-spending in this case will not reveal the double-spender. Thus, to pre-
vent double-spending, any payments received should be immediately checked
and deposited in the Bank. Unfortunately, immediate coin deposits could lead
to deposit timing attacks exposing Tor’s anonymity. More specifically, the timing
of deposits by the nodes along a Tor path discloses to the Bank the path as well
as an estimated of the number of packets transferred. Accumulating deposits for
appropriately long time intervals – sufficiently long that many connections are
established, to mitigate timing attacks – would increase the amount of unchecked
coins and thus of double-spending. Indeed, since anonymous coins are not trace-
able beyond the first Tor node, sending valid coins only to the first node is
enough to prevent it from been traced. For the rest of the nodes, the cheater
uses double-spent coins, exploiting this deposit strategy by transmitting many
packets in a short period of time.

Our Contribution: Hybrid Approach. Both of the two aforementioned classes of
payment schemes have advantages and disadvantages. Our approach creates a
hybrid payment scheme by combining the two payments methods into a single
one. In particular, nodes outside the anonymizing network withdraw an initial
number of anonymous coins (A-mcoins) from the Bank and use them to pay the
first node in the Tor-path (TL) they have chosen. TL then uses micropayments3

to pay TL−1, who also uses micropayments to pay its neighbor. Each time, the
amount of money paid decreases according to each node’s price. Nodes partici-
pating in the Tor network follow the same protocol with the option to use either
anonymous or micropayments for the first node in their forwarding path.

In addition, each of the payment coins in the scheme has a corresponding re-
ceipt and becomes valid only when it is submitted for deposit together with the
receipt. As we will show in the following sections, our payment scheme combines
all the desirable properties of the existing payment schemes, but without main-
taining any of the problem each one of them causes when used individually and
in this way it provides sender-receiver unlinkability along with accountability
and efficiency.

3 High-Level Description of PAR Protocol

Here we provide a high-level description of our payment scheme. To help the
reader, we start with a brief description of the Tor circuit setup; we then present
our payment scheme.

3 Identity-bound payment.
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3.1 Tor

Tor is formed by a set of relay nodes (onion routers) that act as traffic indirection
points. The region in the dotted lines in Figure 1 depicts a typical communication
in Tor. Each onion router maintains a TLS [18] connection to every other onion
router. To establish communication, the sender selects a random sequence of
Tor relays to form a path to the receiver or what is called a circuit. In Figure 1,
the sender selected nodes T1, T2, T3, · · ·TL, where L is the path length. The
sender constructs circuits incrementally, by negotiating a symmetric key with
each onion router on the path, one hop at a time. Initially, the sender contacts
the first path node, TL, and they both commit in a Diffie Hellman (DH) key
agreement procedure. Once this initial circuit has been created, sender uses TL

to extend the circuit to TL−1. In particular, TL and TL−1 establish a circuit
– through the TLS channel they share – which TL relates to the one with the
sender. Sender commits anonymously (using TL as mediator) in a Diffie Hellman
(DH) key exchange procedure with TL−1. Repeating this process through the
extended tunnel, the sender may add more Tor nodes to the circuit. At the final
stage, the last node in the path, T1, opens a data stream with the receiver and a
regular TCP connection is established between the sender and the remote site’s
IP address. At the end of the circuit setup procedure, every relay in the path
shares a secret key with the anonymous path initiator, as well as with each of his
path neighbors. The key a path node shares with each of his neighbors is only
used for securing their part in the communication path. Each transmitted Tor
message along a path, contains an unencrypted header with a circuit ID and a
multiply-encrypted payload. At each hop, the corresponding path node decrypts
the payload – using the key that node and the sender share – and replaces the
circuit ID with the one that corresponds to his circuit with next node in the
path.

3.2 PAR

We introduce the hybrid payment scheme from the previous section to the Tor
network; again, see Figure 1. In our scheme, payments are conducted between
consecutive nodes on the forwarding paths and added inside the transmitted
messages using an additional encryption layer. Each forwarding node Ti creates
payment coins for its path successor Ti−1 using sender S’s directions and adds
these payment coins to the onion message to be forwarded to Ti−1. Payment
information is provided to each Ti through the secret channel it and the sender
share. To avoid exposure as in Tor, Ti further encrypts the resulting message
with the key it shares with its successor. To complete the payment transaction
and for the coins to become valid, every relay node has to receive the receipts for
its payment by its successor. Therefore, each node, other than the last one, upon
validating the received message, sends to its predecessor the payment receipt. S
controls the payments made along the forwarding path by supplying the receipts
for all the coins used.

To avoid cheating, S provides each path node Ti with additional information
for it to verify that the payment received from Ti+1 is indeed valid. Receipts are
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forwarded to Ti+1 if and only if the the payments are valid. Since the circuit is
used in both directions (i.e. to both receive and transmit messages, the last node
can either be pre-paid or paid after the delivery of the message by the sender
depending on the acceptable bounded risk. In either approach misbehaving nodes
will be detected within the first round of sent messages and will be excluded from
the forwarding path, which will cause them more loss than the expected gain
from fraudulent behavior and they will have no incentive for cheating.

The initial setup stage for Tor circuits will be extended with nodes sharing
some hash function that will be used prevent third party manipulations in the
payment protocol.

4 A Hybrid Payment Scheme

In this section, we present a detailed description of our payment protocol. How-
ever, before proceeding, we first define three properties required to preserve
anonymity in an onion routing network:

Sender-Receiver Unlinkability. Let S be a user, who may or may not be a
member of the anonymizing network, who sends a message M anonymously4 to
a user R. Then nobody except a global adversary, even with the collaboration
of a third party and R, should be able to link sender and receiver or reveal the
path between them.

Usable Efficiency. This refers to the fact that the overhead in the packet
exchange for the payment scheme and the CPU overload with additional crypto-
graphic operations will be reasonable and will not impede the normal functioning
of the system

Accountability. This property ensures that any cheating node trying to forge
messages or double-spend coins is caught and expelled from the network.

4.1 Payment Coins

We use two types of payments that consist of two parts: a payment part, which
we will call a coin, and a receipt part. A coin becomes valid only when it is
accompanied by the corresponding receipt. The receipt is a random number that
is bound to the coin by incorporating its hash value in the coin. Thus a random
number r serves as a receipt for the coin that contains the hash H(r). Although
similar in structure, the two types of payments have different properties and that
is why they are named differently: micro-coins (S-coins) and anonymous coins
(A-coins).

S-coins(Signed microcoins). S-coins are generated and used for payments
between Tor participants. They are based on the micropayments introduced in

4 Here, “anonymously” means “using the anonymizing network”.
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[7] but with the addition of receipts. An S-coin is an extension of a microcoin
MC :

SCTi→Tj = sigTi{MC, H(r), Tj}.

As in the microcoin case, an S-coin is strongly bound to both the identity
of the node Ti, who generates it by signing its content, and the identity of the
payee Tj. Finally, it contains the hash of the receipt H(r) that makes the coin
valid. The microcoin part of the S-coin MC contains the transaction details τ
as well as a sequence number – according to micropayment scheme [7] – without
containing any timing information.

S-coins inherit the properties of microcoins. Only a predetermined fraction of
them are payable, while no participants in the payment scheme can find out in
advance which coins will become payable.

A-coins (Anonymous coins). A-coins use the idea of e-cash ([6]). They are
generated by the Bank upon users’ requests. Users outside Tor buy a prede-
termined number of A-coins from the Bank and pay with them for using the
anonymizing network. Members of Tor also acquire a number of A-coins and
may also use them. All A-coins are of the form

AC(r) = sigB{r},

where r is a random number generated by the User, and sigB{r} is the blind
signature of the Bank of r. A-coins are all payable and subjected to double-
spending checks.

4.2 Payment Protocol

Figure 2 presents in detail the messages exchanged in the payment protocol. We
further analyze the individual protocol stages.

Initial Set-up. All nodes participating in Tor acquire a public-private signature
key pair (sks

U , pks
U) and a public-private encryption key pair (ske

U , pke
U), used

to interact with the other members in the network. Bank generates a blind
signature key pair (skb

B, pkb
B) for signing A-coins. In addition to the hash H

already used in Tor for integrity purposes, we establish another collision resistant
hash function Hr for the coins’ receipts. At the end of the circuit setup procedure
in Tor, the sender shares with each node Ti in the path a secret key KSTi while
any two consecutive nodes in a path share a secret key KTiTi+1 . In our system,
the sender agrees with each path node on a hash function HSTi . The shared keys
are used for communication encryption whereas the hash functions for integrity
checks. We use Mk to denote message M encrypted under key K; sigUM is the
signature of user U on M .

Payment Generation. A-coins are generated in cooperation with the Bank.
When user U wants to obtain A-coins for payment, he generates a fixed set of
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Fig. 2. The intuition behind our payment protocol is that Tor participants use S-coins
to avoid exposing the forwarding path; outside senders, by contrast, use A-coins to
maintain their anonymity

random numbers r1, r2, . . . , rn, which serve as the receipts for the coins. Then,
the user submits to the Bank the hashes Hr(r1), Hr(r2), . . . , Hr(rn) which in
turn signs them and generates coins of the form:

ACi = sigB(Hr(ri)).

The resulting A-coins can be used for payment to any node in the network.
In the case of S-coins, users can generate them but they have to specify the

payee. When user U wants to pay a node Ti with an S-coin, he generates the
random number receipt r and its microcoin-like part MC which consists of
a number that increases by one per S-coin payed by U to Ti and no timing
information at all. The final form of the S-coin is:

SCU→Ti(r) = sigU (MC, Hr(r), Ti).

Communication Protocol Description. Let S send to R a message M
through the path T�, . . . , T1. The following sequence of payments occurs for the
transfer of the message:

– S pays T� � coins, which may be A-coins or S-coins. Nodes outside Tor can
only pay by A-coins while Tor nodes can use either type of coin.

– each node Ti+1 on the forwarding path pays its successor Ti i S-coins.

The sender S chooses the receipts that will be used by the nodes on the path to
generate payments for their successors. It also sends proofs to each of the nodes
Ti in the form Hr(r1), . . . , Hr(ri) where r1, . . . , ri will be the receipts for the
coins the node will get from its predecessor.

A node Ti+1 gets the receipt for its payment coins from its successor Ti on
the path.
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Exchanged Messages. The general form of the message that a node Ti+1 sends
to a node Ti on the forwarding path between sender and receiver is the following:

( {Ti, coins for Ti, sigTi+1{H(coins for Ti)}, {MS→Ti}KSTi
}KTi+1Ti

)

– Ti specifies the receiver of the message
– “coins for Ti” is the payment the node gets for forwarding the packet. The

coins here are either A-coins if the sender was an outside node and Ti is the
first node in the path, or S-coins of the form SCTi+1→Ti

– sigTi+1{H(coins for Ti)} is mainly needed in the case of A-coins5 and serves
accountability purposes when double-spending has been detected and

– {MS→Ti}KSTi
is the part of the onion message from the sender that has to

be read by Ti.

Now consider the last part of the message MS→Ti , which has the following
form:

( Ti−1, Ti+1 receipt, payment guarantee for Ti,

values for generation of coins for Ti−1, {MS→Ti−1}KSTi−1
)

– Ti−1 is the successor of Ti on the path
– the receipts for Ti+1 are the random numbers that the sender generated

encrypted with the key KSTi+1 ; Ti sends them back to its predecessor on the
path

– the guarantees that Ti receives for its payment are of the form:
HSTi(r1), . . . , HSTi(rj), where r1, . . . , ri will be the receipts for the coins he
was paid with

– {MS→Ti−1}KSTi−1
is the part of the onion message from the sender that

has to be forwarded to Ti−1. In the case when Ti is the last node on the
forwarding path, MS→Ti−1 is the message to the receiver.

After receiving its message from its predecessor, the node Ti acquires its pay-
ment, which is verified using the guarantees received from the sender. Then, it
sends the receipts for Ti+1 to its predecessor. Next, the node uses the values
from the sender to generate payment coins for its successor Ti−1. It adds the
coins to {MS→Ti−1}KSTi−1

, signs the whole resulting message and forwards it to
its successor.

Deposit. The deposit of all coins is handled by the Bank, which checks their
validity and depositability. The validity of S-coins can be checked immediately
by each node which is paid with them while the validity of A-coins is established
at the Bank that checks for double-spending. At each deposit time the nodes
deposit all coins that they have received during the period. Detailed analysis of
the deposit period is provided in a later section. Here, we define the procedure for
deposit. Coins are considered for deposit if and only if they are accompanied by
5 It can be eliminated in the case of S-coins.
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the corresponding receipt. The valid coins will be handled in two different ways:
The deposit of S-coins is, in essence, a deposit of the underlying microcoins. This
means that only a fraction of them will become depositable [7]. All A-coins are
depositable at their nominal value.

4.3 Discussion

We preserve Tor’s anonymity by allowing each node on the path to know only
its predecessor and its successor. To this end, we harness the layered structure
of the message passed by the sender to the forwarding path and the fact that
payments are made between consecutive nodes. However, the sender still has
control of the payments made along the path by sending the receipts used for
their generation. A node that attempts to cheat can be easily identified by its
successor. Since the successor holds the receipts for the cheater’s payment there
is no incentive for the cheater to either mangle or drop the message. Finally, Tor
encryption guarantees both the confidentiality and integrity of all transmitted
messages.

5 Security Analysis

There has been a wealth of research related to attacks against onion routing sys-
tems including Tor. Our goal is to ensure that PAR does not introduce new types
of attacks, especially ones that can target either the anonymity or the robustness
of an onion routing system. In addition, we prove the security properties of PAR
using the augmented Tor threat model introduced earlier.

Sender-Receiver Unlinkability and Deposit Rate
We provide a formal model of information leakage of the payment scheme that
can expose anonymity when combined with known attacks against anonymity
networks. Although two differentiable types of payments are used in PAR this
does not bring any higher risk than currently exists in Tor for the identity of
the senders, which can be recognized as such if they use A-coins. The reason for
this is that only nodes outside the system are required to pay the first node in
their forwarding path with A-coins and currently lists of the relay nodes in Tor
are publicly available and therefore outside nodes using the anonymizing system
can be also recognized by the first relay that they use.

We will consider attacks that have access to the deposit information in addi-
tion to corrupted nodes. In our payment scheme, the Bank can be considered a
global adversary since it observes the deposits of coins made at all nodes. That
is why in the analysis of possible attacks we will speak in terms of whether
the Bank can disclose any of the anonymization that occurs in Tor’s forwarding
paths, with or without cooperation from malicious nodes.

The most serious type of attack for an anonymization network is one that
manages to link senders and receivers communicating over the network. Since
the senders using PAR pay with anonymous coins if they are outside nodes,
the Bank cannot identify the start of the path that they choose to use. If the
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sender is a Tor node that forwards other traffic as well, the payments for all of
its own and forwarded traffic are indistinguishable; hence the Bank cannot trace
the traffic originating at the node just by observing deposits. The receivers are
also unidentifiable by the Bank, since there is no monetary transaction between
the last node and the receiver.

We have shown that the Bank by itself cannot link sender and receiver. Now
we must consider the question whether an adversary observing the deposits
can obtain partial information about a forwarding path by discovering three
consecutive inside nodes in the path, i.e., being able to guess to where a node
forwards packets received from a particular predecessor. Consecutive nodes in
a path can be inferred from the signed coins deposits, but the only thing that
this means is that there is at least one path that has that pair; nothing more is
learned about which connection this path serves.

For the purposes our analysis let cpT,T̃ ,i
<T�,...,T1> be the packets transferred on a

connection path such that T = Ti and T̃ = Ti−1. We denote the packets on all
connection paths that have T̃ as a successor of T by

C(T, T̃ ) = {cpT,T̃ ,i
<Til

,...,Ti1>|1 < i ≤ �}.

Then the number of coins that a node T̃ will receive from T will be

G(T, T̃ ) =
∑

∀cpT,T̃ ,i
<T�,...,T1>∈C(T,T̃ )

i ∗ cT,T̃ ,i
<T�,...,T1>.

If we denote the number of anonymous coins that a node T deposits with Gac(T ),
we can calculate the number of packets forwarded by T (assuming that a node
is paid with one coin for each packet forwarded):

∑

T ′

G(T ′, T ) + Gac(T ) −
∑

T ′′

G(T, T ′′).

In order to hide the exact number of packets that it has forwarded, a node can
deposit some of its own anonymous coins; thus the above expression will no
longer be a correct estimate. Not knowing the rate of packet transfer nor the
number of connections in which two nodes are consecutive, an adversary cannot
receive enough information just from the deposits of coins to determine three
consecutive nodes in a path.

Let us now assume that there is a malicious node that colludes with the
Bank in order to reveal more about a path. The malicious node can disclose
his predecessor and his successor on a particular connection path, as well as his
position in that path. Let T = Ti be such a malicious node in the path T�, . . . , T1.
Now the adversary can find out who are the nodes Ti+1 and Ti−1 and the number
of packets k that Ti forwarded on that connection. The only thing that it can
infer about the identities of Ti+2 and Ti−2 is that if

(i − 1) ∗ k > G(Ti−1, T̃ ) (1)
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then the node T̃ cannot be a successor of Ti−1 and similarly if

(i + 1) ∗ k > G(T̃ , Ti+1) (2)

T̃ cannot be a predecessor of Ti+1. This is true only if we assume that the
connections among different nodes have the same forwarding rate. Thus the
chance of the adversary finding out anything more about the path than what
it would have found out from a malicious node in Tor without any payments is
very small.

In the discussion above we have made an implicit assumption that the deposits
of coins occur at certain intervals during which enough connections have been
established. The statement “enough connections” means that there are no cases
where only one node deposits another node’s signed coins and it is clearly its
successor in any connection. Also, we minimize the probability of Eq. 1 or Eq. 2
being true.

Deposit Rate. Now we give an estimate of what we consider “enough” connec-
tions and packets transferred during a deposit period. The situation in which an
adversary may eliminate a link between two Tor nodes as being part of the path
transferring the packets on a particular connection is when the payments made
for that link are not enough for the packets that were expected to be sent on
the connection. To avoid such situation, we want the expected payments made
for packets forwarded along a link between any nodes during a deposit period to
exceed the expected payment for the packets forwarded on a single connection.

Let us assume that there are N packets sent across a network consisting of n
nodes over C connections during a deposit interval. Let L be the average length
of the forwarding path. Then since the probability of a node being in any position
on the path is 1

n , the expected payment that a node will get per packet sent over
PAR will be

1
n

(1 + . . . + L) =
L ∗ (L + 1)

2n

Now considering that every node will forward on average N
n packets, a node will

be paid N∗L∗(L+1)
2n2 , which distributed across the n−1 edges going out of it yields

N∗L∗(L+1)
2n2∗(n−1) payment per edge. At the same time the average payment made for

the packets on a connection is N∗L∗(L+1)
2C .

We observe that for

N ∗ L ∗ (L + 1)
2n2 ∗ (n − 1)

>
N ∗ L ∗ (L + 1)

2C

to hold, we need O(n3) connections across the whole network or an average
of O(n2) connections per node. We stress that with so many connections, an
adversary would not be able to eliminate even a single possible path route for
a given connection. If we now consider the situation when the adversary can
narrow the possible successors of a particular node down to some number nc,
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there are still n�
c possible paths for the connection. However in this case we would

want
N ∗ L ∗ (L + 1)

2n2 ∗ nc
>

N ∗ L ∗ (L + 1)
2C

and we will need a total of O(n2) connections across the network or O(n) per
node.

In previous discussion we mentioned that each node may deposit some of its
own anonymous coins to provide more anonymity of the traffic it is forwarding.
We now point out that by having each node deposit anonymous coins we will
additionally disguise the entry points for outside traffic being forwarded in the
network. Since the ratio of anonymous and signed coins in the payment scheme
is 2

L−1 , to preserve this ratio across all nodes each node should add its own
anonymous coins to maintain the same deposit ratio.

Usable Efficiency. The efficiency of our payment scheme is comparable to that
of micropayments [7, 19]: the majority of the payment coins in our system are
signed coins based on microcoins with the additions of receipts. These are much
more efficient than ecash [6], which requires zero knowledge proofs. (Even our
anonymous coins are lightweight blind signatures.)

Accountability. The accountability property requires that the identity of a
node that behaves maliciously – double-spending, forging attempts, message
manipulation, etc. – will be revealed along with a proof of his guilt.

No node can tamper with the forwarded onion message since it is protected
with layers of encryption that can be opened only in the corresponding order.
Thus any attempt for forgery will be exposed by its successor. In addition, no
double spending is possible for S-coin payments. Each of the coins is a signature
by the spender; furthermore, it specifies the receiver and the payment details.

Double spending for anonymous coins is possible and can only be detected
at deposit procedure. However, messages containing A-coins, contain also signed
hashes of the coins, which serve as proof of A-coins’ origin if a double-spending
has occurred. Thus, the nodes paid with the same coin have an proof for the
misbehavior.

There is an issue of whether maintaining logs of coin related message ex-
changes is necessary after coins’ deposit for satisfying accountability in our sys-
tem. Indeed, keeping some A-coin/S-coin related logs is required to detect mali-
cious actions by the spender/payee; In particular Bank is required to keep a log
of the serial numbers of the A-coins that have been deposited so far and as well
as the biggest serial number of S-coins each pair of peers has exchanged. The A-
coins exchanges are required to be maintained for detecting the double-spender
but only for the time of one deposit period.

Thus far, we have showed that our payment scheme abides by its design
principles. We now prove that it still satisfies properties common for any viable
payment scheme.

Correctness. When all participants act honestly and follow the protocol, our
payment scheme fulfills its goals: all packets are delivered, the nodes on the
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forwarding path are paid, and the anonymity of the sender and receiver is main-
tained. If all nodes properly forward the onion message that is initiated by the
sender it is guaranteed to reach its receiver because each forwarding node knows
where exactly to send it. According to the payment scheme, each node receives
exactly one coin more than it has to pay its successor per packet. Thus all nodes
are paid equally for their service. We have already shown that payments observed
by the Bank are not enough to compromise the anonymity of the identities of
sender and receiver.

Robustness. Robustness refers to the probability that the path chosen by the
sender will be secure in the presence of malicious parties in the network. Let us
assume that the fraction of malicious nodes is α. Then the probability that there
is no malicious node on a path of length l is (1−α)l. The computed probability,
however, is important for the case when we assume that a malicious mode on
the path prevents the traffic, i.e. it drops or misdirects it. This also holds in Tor
with no payments. Now we restrict our attention to malicious nodes only in the
context of the payment system, i.e. nodes that may expose the connections going
through them and the corresponding payments for them. Based on our analysis
showing that a node acting in this malicious way can disclose its predecessor and
successor in the forwarding path, at least half of the nodes on a path will have
to be malicious in order to expose the identities of sender and receiver. Thus
the probability of preserving the anonymity of sender and receiver over a path
of length l is (1 − α)l/2.

Monetary Unforgeability. No coin forgery is possible in the payment scheme
since both types of coins are protected with signatures. Signed coins contain
personal signatures of the payer; anonymous coins contain the Bank’s signatures.

6 System Performance Evaluation

In this section, we quantify the computational overhead added to Tor by our pay-
ment scheme. We execute the openssl speed command 1000 times and compute
the average estimated running time of blind and digital signatures (RSA), and
symmetric key encryption and hashes (SHA1). We will focus on the overhead
imposed on the communication initiator S as well as on a random path node Ti.

We define ch to be the cost of a hash function, ce the cost of a symmetric
encryption procedure, and cs(cbs) and cvs(cbvs) the (blind) signature and (blind)
signature verification cost. For 1024 byte messages hashed with SHA1, ch =
0.0045 milliseconds. For CBC DES encryption6 in blocks of 256 bytes and RSA
signature and verification in blocks of 1024 bytes the estimated running times
are ce = 0.020, cs = 3.361, and csv = 0.142 milliseconds. Assume a path of
length L. For each payment round, S has to generate L receipts for the required
A-mcoins and have them blindly signed by the Bank, and symmetrically encrypt
the A-mcoins’ receipts with KSTL−1 . In addition, S should calculate the content

6 We used DES for our tests, precisely because it is slower than AES; we wished to
set a lower bound on performance.
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of S-mcoins that each path node Ti will pay its successor Ti−1, and encrypt the
receipts with KSTi−1 key. Thus the overall computational cost for S for each
payment round would be:

CostS = L ∗ (cbs + ch + ce) +
L ∗ (L − 1)

2
∗ (ch + ce)

For the usual case of L = 4, CostS averages to 14.24 milliseconds overall, or to
1.4 milliseconds per coin to be paid.

On the other hand, each node Ti in the path, should create i − 1 for Ti−1’s
S-mcoins and verify the validity of S-mcoins it received by Ti+1 (signature veri-
fication and receipt):

CostTi = i ∗ (cvs + ch) + (i − 1) ∗ cs

In this case Ti will have to spend 0.045 milliseconds for each coin it gets payed
and 3.36 milliseconds for each coin it pays.

The performance impact of our scheme is dominated by two factors: the path
length and the number of packets per payment. However, the two have very dif-
ferent properties. The number of packets per payment, N , represents the tradeoff
between performance and risk. By setting N high, the total cost of our scheme is
minimized, since the expense is amortized over a large number of transmissions.
However, N also represents how willing nodes are to transmit packets without
assurance of payment. If N is too high, a cheater can send a fair amount of data
before being caught. Minimizing that risk requires setting N low, and hence
increasing the cost.

7 Related Work

Previous research on applying payments in anonymizing networks was focused
on mixnets: Franz, et al [10], Figueiredo et al. [11] and Reiter et al. [12]
all use a blind signature type of electronic cash to induce mixes to operate
honestly. The approach of Franz et al. divides electronic payment and messages
into small chunks and allows mixes and users to do the exchange step-by-step,
which made the resulting system extremely inefficient. Furthermore, the receiver
is required to participate in the payment procedure, which is undesirable: the
receiver may not know or care about Tor. Figueiredo provided a completely
anonymous payment system for mixnets, but without any accountability and
robustness. Reiter et al. proposed a fair exchange protocol for connection-based
and message-based mixnets. However, their protocol assumes that mixes would
work properly to receive their payment after they commit to their service. They
do not provide any guarantee that participants will indeed get paid beyond the
fact that the initiator will have no reason for not paying them. Furthermore,
computationally expensive offline zero knowledge computations are required in
the case of a message-based mixnet protocol [20], which renders the system
inefficient and thus currently non-deployable.
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8 Conclusions

Current anonymity networks appear to lack wide participation due to their vol-
unteer nature. We posit that by providing economic incentives, we can help
incentivize users to both participate and to use anonymity networks to pro-
tect their communications. Unfortunately, current payment schemes cannot be
used to enable payments in Tor. To address this, we introduce a novel hybrid
scheme and prove that it is possible to add a secure payment scheme to an onion-
based anonymity network. Our approach combines features of existing payment
schemes in an innovative way, achieving provable sender-receiver unlinkability,
accountability and efficiency at the same time.

Furthermore, we relate the anonymity of the overall architecture to the
amount of traffic that has been forwarded through the network and the number
of Tor relays. To avoid exposure, we provide initial lower-bound on the minimum
payment deposit time required. Additionally – and similar to Tor – it appears
that longer paths have a higher risk of including malicious nodes that may try to
expose sender and receiver. On the other hand, shorter paths are more robust,
incurring lower communication and computation overhead. These two limita-
tions, namely the path length and the presence of malicious nodes, are also part
of the underlying Tor network and reasonable parameters for the scheme can
minimize their effect. Finally, a preliminary evaluation of our scheme indicates
that PAR does not incur prohibitive communication and computational costs
that could prevent its practical deployment.
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